BHARATHIDHASANAR MATRIC HIGHER SECONDARY SCHOOL **ARAKKONAM** ## XII - MATHEMATICS ## MATERIAL 6 Marks & 10 Marks PREPARED BY: S. Gurunathan., B.Sc., B.Ed ## APPLICATIONS OF MATRICES AND DETERMINANTS Find the adjoint of matrices: (i) $$\begin{bmatrix} 3 & -1 \\ 2 & -4 \end{bmatrix}$$; (ii) $\begin{bmatrix} 1 & 2 & 3 \\ 0 & 5 & 0 \\ 2 & 4 & 3 \end{bmatrix}$; $\begin{bmatrix} 1 & 2 & 3 \\ 0 & 5 & 0 \\ 2 & 4 & 3 \end{bmatrix}$. Solution: (i) $$A = \begin{bmatrix} 3 & -1 \\ 2 & -4 \end{bmatrix}$$. the matric of cofactor $[Aij] = \begin{bmatrix} -4 & -2 \\ 1 & 3 \end{bmatrix}$ Therefore adjA= $$(Aij)^T$$ = $\begin{bmatrix} -4 & 1 \\ -2 & 3 \end{bmatrix}$ (ii) $$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 5 & 0 \\ 2 & 4 & 5 \end{bmatrix}$$ Cofactor of 1 is $$=+(15-3)=15$$ Cofactor of 2 is =- $$(0-0) = 0$$ Co-factor of 3 is $$=+(0-10)=-10$$ cofactor of 0 is $$=-(6-12) = 6$$ cofactor of 5 is $$=+(3-6)-3$$ cofactor of 0 is $$=-(4-4) = 0$$ cofactor of 2 is $$=+(0-15) = -15$$ cofactor of 4 is $$=-(0-0)=0$$ cofactor of 3 is $$=+(5-0) = 5$$ ا الله الإلك ا $$Aij = \begin{bmatrix} 15 & 0 & -10 \\ 6 & -3 & 0 \\ -15 & 0 & 5 \end{bmatrix}$$ There fore adj.A = $$\begin{bmatrix} 15 & 6 & -15 \\ 0 & 3 & 0 \\ -10 & 0 & 5 \end{bmatrix}$$ (iiI) $$A = \begin{bmatrix} 2 & 5 & 3 \\ 3 & 1 & 2 \\ 1 & 2 & 1 \end{bmatrix}$$ cofactor of 2 is = $$+ (1-4) = -3$$ cofactor of 5 is = $$-(3-2) = -1$$ cofactor of 3 is $$=+$$ (6-1) $=$ 5 cofactor of 3 is =- $$(5-6) = 1$$ cofactor of 1 is $$=+(2-3) = -1$$ cofactor of 2 is =- $$(4-5) = 1$$ cofactor of 1 is $$=+(10-3) = 7$$ cofactor of 2 is =- $$(4-6) = 5$$ cofactor of 1 is $$=+(2-15) = -13$$ $$Aij = \begin{bmatrix} -3 & -1 & 5 \\ 1 & -1 & 1 \\ 7 & 5 & -13 \end{bmatrix}$$ There fore adj.A = $$\begin{bmatrix} -3 & 1 & 7 \\ -1 & -1 & 5 \\ 5 & 1 & -13 \end{bmatrix}$$ Solution $$A = \begin{bmatrix} 1 & 2 \\ 3 & -5 \end{bmatrix}$$. There fore adj.A = $$\begin{bmatrix} -3 & 1 & 7 \\ -1 & -1 & 5 \\ 5 & 1 & -13 \end{bmatrix}$$ 2. Find the adjoint of the matrix A= $\begin{bmatrix} 1 & 2 \\ 3 & -5 \end{bmatrix}$. and verify the result. A(adj.A) = (adj.A)A = |A||₂ Solution A = $\begin{bmatrix} 1 & 2 \\ 3 & -5 \end{bmatrix}$. the matrix of cofactor[Aij]= $\begin{bmatrix} -5 & -3 \\ -2 & 1 \end{bmatrix}$ There fore adjA= $(Aij)^T$ = $\begin{bmatrix} -5 & -2 \\ -3 & 1 \end{bmatrix}$ $$A(adj.A) = \begin{bmatrix} 1 & 2 \\ 3 & -5 \end{bmatrix} \begin{bmatrix} -5 & -2 \\ -3 & 1 \end{bmatrix}$$ $$= \begin{bmatrix} -11 & 0 \\ 0 & -11 \end{bmatrix} = -11 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = |A||_2$$ (adj.A)A = $\begin{bmatrix} -5 & -2 \\ -3 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & -5 \end{bmatrix}$ $$= \begin{bmatrix} -11 & 0 \\ 0 & -11 \end{bmatrix} = -11 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = |A||_2$$ Hence A(adj.A) = (adj.A)A = |A||₂ 3. find the adjoint of matrix A = $\begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix}$ and verify the result. A(adj.A) = (adj.A)A = |A||₂ (adj.A)A = $$\begin{bmatrix} -5 & -2 \\ -3 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & -5 \end{bmatrix}$$ $$= \begin{bmatrix} -11 & 0 \\ 0 & -11 \end{bmatrix} = -11 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = |A|I_2$$ Solution: $$A = \begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix}$$ $$|A| = \begin{vmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{vmatrix}$$ $$= 3(-3+4) + 3(2-0) + (-2-0)$$ $$= 3+6-8=1$$ Cofactor of 2 is $$=+(-3+4)=1$$ Cofactor of 5 is =- $$(2-0) = -2$$ cofactor of 3 is $$=+(-2-0) = -2$$ cofactor of 3 is =- $$(-3+4) = -1$$ cofactor of 1 is $$=+(3-0) = 3$$ cofactor of 2 is =- $$(-3+0) = 3$$ cofactor of 1 is $$=+(-12+12)=0$$ cofactor of 2 is =- $$(12-8)$$ =-4 cofactor of 1 is $$=+(-9+6) = -3$$ $$Aij = \begin{bmatrix} 1 & -2 & -2 \\ -1 & 3 & 3 \\ 0 & -4 & -3 \end{bmatrix}$$ Therefore adj.A = $$\begin{bmatrix} 1 & -1 & 0 \\ -2 & 3 & -4 \\ -2 & 3 & -3 \end{bmatrix}$$ $$A(adj.A) = \begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 & 0 \\ -2 & 3 & -4 \\ -2 & 3 & -3 \end{bmatrix}$$ Therefore adj. A = $$\begin{bmatrix} 1 & -1 & 0 \\ -2 & 3 & -4 \\ -2 & 3 & -3 \end{bmatrix}$$ $$A(adj.A) = \begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 & 0 \\ -2 & 3 & -4 \\ 0 & 2 & 3 & -3 \end{bmatrix}$$ $$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = (1)I = A I$$ $$(adj.A)A = \begin{bmatrix} 1 & -1 & 0 \\ -2 & 3 & -4 \\ -2 & 3 & -4 \end{bmatrix} \begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 2 & -3 & 4 \end{bmatrix}$$ $$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = (1)I = |A|I$$ Hence A(adj.A) = $(adj.A)A = |A|I_3$ Hence proved. 4. Find the inverse of each of the following matrices: $$(i) \begin{bmatrix} 1 & 0 & 3 \\ 2 & 1 & -1 \\ 1 & -1 & 1 \end{bmatrix}, (iii) \begin{bmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{bmatrix},$$ $$(iv) \begin{bmatrix} 8 & -1 & -3 \\ -5 & 1 & 2 \\ 10 & -1 & -4 \end{bmatrix}, (v) \begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$$ $$(i) \begin{bmatrix} 1 & 0 & 3 \\ 2 & 1 & -1 \\ 1 & -1 & 1 \end{bmatrix}, (ii) \begin{bmatrix} 1 & 3 & 7 \\ 4 & 2 & 3 \\ 1 & 2 & 1 \end{bmatrix}, (iii) \begin{bmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{bmatrix}$$ $$(iv) \begin{bmatrix} 8 & -1 & -3 \\ 5 & 1 & 2 \end{bmatrix}, (v) \begin{bmatrix} 2 & 2 & 1 \\ 1 & 2 & 1 \end{bmatrix}$$ $$(iv)\begin{bmatrix} 8 & -1 & -3 \\ -5 & 1 & 2 \\ 10 & -1 & -4 \end{bmatrix}, (v)\begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$$ Solution: (i)A = $$\begin{bmatrix} 1 & 0 & 3 \\ 2 & 1 & -1 \\ 1 & -1 & 1 \end{bmatrix}$$ $$|A| = \begin{vmatrix} 1 & 0 & 3 \\ 2 & 1 & -1 \\ 1 & -1 & 1 \end{vmatrix}$$ $$=1(1-1)-0(2+1)+3(-2-1)$$ $$=-9 \neq 0$$ Co-factor of 1 is $$=+(1-1)=0$$ Co-factor of 0 is =- $$(2+1) = -3$$ Co-factor of 3 is $$=+(-2-1) = -3$$ Co-factor of 2 is =- $$(0+3) = -3$$ Co-factor of 1 is $$=+(1-3) = -2$$ Co-factor of -1 is =- $$(-1-0) = 1$$ Co-factor of 1 is $$=+(0-3) = -3$$ Co-factor of $$-1$$ is $=-(-1-6) = 7$ Co-factor of 1 is = $$+(1-0) = 1$$ $$Aij = \begin{bmatrix} 0 & -3 & -3 \\ -3 & -2 & 1 \\ -3 & 7 & 1 \end{bmatrix}$$ There fore adj.A = $$(Aij)T = \begin{bmatrix} 0 & -3 & -3 \\ -3 & -2 & 7 \\ -3 & 1 & 1 \end{bmatrix}$$ $$A^{1} = \frac{1}{|A|} (adj.A) = \frac{1}{-9} \begin{bmatrix} 0 & -3 & -3 \\ -3 & -2 & 7 \\ -3 & 1 & 1 \end{bmatrix} = \frac{1}{9} \begin{bmatrix} 0 & 3 & 3 \\ 3 & 2 & -7 \\ 3 & -1 & -1 \end{bmatrix}$$ (ii) Solution: (i) A = $$\begin{bmatrix} 1 & 3 & 7 \\ 4 & 2 & 3 \\ 1 & 2 & 1 \end{bmatrix}$$ $$|A| = \begin{vmatrix} 1 & 3 & 7 \\ 4 & 2 & 3 \\ 1 & 2 & 1 \end{vmatrix}$$ $$=1(2-6) -3 (4-3) +7(8-2)$$ $$=-4-3+42=35\neq 0$$ Cofactor of 1 is $$=+(2-6) = -4$$ co -factor of 3 is =- $$(4-3) = -1$$ co-factor of 7 is $$=+(8-2) = 6$$ co-factor of 4 is =- $$(3-14) = 11$$ co-factor of 2 is $$=+(1-7) = -6$$ co-factor of 3 is =- $$(2-3) = 1$$ co-factor of 1 is $$=+$$ (9-14) $=-5$ co-factor of 2 is =- (3-28) = 25 co-factor of 1 is =+(2-12) = -10 $$Aij = \begin{bmatrix} -4 & -1 & 6 \\ 11 & -6 & 1 \\ -5 & 25 & -10 \end{bmatrix}$$ Therefore adj.A = $$\begin{bmatrix} -4 & 11 & -5 \\ -1 & -6 & 25 \\ 6 & 1 & -10 \end{bmatrix}$$ $$\bar{A}^1 = \frac{1}{A} (adj.A) = \frac{1}{35} \begin{bmatrix} -4 & 11 & -5 \\ -1 & -6 & 25 \\ 6 & 1 & -10 \end{bmatrix}$$ (iii) Solution: (iii) A = $$\begin{bmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{bmatrix}$$ $$\begin{vmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{vmatrix}$$ $$=1(3-0)-2(-1-0)+(2-0)$$ $$=3+2-4=1$$ Cofactor of 1 is =+(3-0) = 3 Cofactor of 2 is =- (-1-0) = 1 cofactor of -2 is =+(2-0) = 2 cofactor of -1 is =- (4-0) = -4 cofactor of 3 is =+(1-0) = 1 cofactor of 0 is =- (-2-0) = 2 cofactor of 0 is =+ (0+6) = 6 cofactor of -2 is =-(0-2) = 2 cofactor of 1 is = + (3+2) = 5 $$Aij = \begin{bmatrix} 3 & 1 & 2 \\ 2 & 1 & 2 \\ 6 & 2 & 5 \end{bmatrix}$$ (adj. A) = $$(Aij)$$ T= $$\begin{bmatrix} 3 & 2 & 6 \\ 1 & 1 & 2 \\ 2 & 2 & 5 \end{bmatrix}$$ $$A^{-1} = \frac{Adj.A}{|A|} = \begin{bmatrix} 3 & 2 & 6 \\ 1 & 1 & 2 \\ 2 & 2 & 5 \end{bmatrix}$$ (iv) Solution: (iv) A = $$\begin{bmatrix} 8 & -1 & -3 \\ -5 & 1 & 2 \\ 10 & -1 & -4 \end{bmatrix}$$ $$|A| = \begin{vmatrix} 8 & -1 & -3 \\ -5 & 1 & 2 \\ 10 & -1 & -4 \end{vmatrix}$$ $$= 8(-4+2) + 1(20-20) - 3(5-10)$$ $$= -16+0+15=-1$$ Cofactor of 8 is =+ $$(-4+2) = -2$$ Cofactor of -1 is =- $(20-20) = 0$ cofactor of -3 is =+ $(3-10) = -5$ cofactor of -5 is =- $(4-3) = -1$ cofactor of 1 is =+ $(-32+30) = -2$ cofactor of 2 is =- $(-8+10) = -2$ cofactor of 10 is =+ $(-2+3) = 1$ cofactor of -1 is =- $(16-15) = -1$ cofactor of -4 is =+ $(8-5) = 3$ $$[Aij] = \begin{bmatrix} -2 & 0 & -5 \\ -1 & -2 & -2 \\ 1 & -1 & 3 \end{bmatrix}$$ (adj. A) = $$(Aij)T = \begin{bmatrix} -2 & -1 & 1\\ 0 & -2 & -1\\ -5 & -2 & 3 \end{bmatrix}$$ عَادِ عَادِ عَادِ عَادِ عَادِ عَادِ عَادٍ عَا $$A^{-1} = \frac{1}{|A|} (adj \cdot A) = \frac{1}{-1} \begin{bmatrix} -2 & -1 & 1\\ 0 & -2 & -1\\ -5 & -2 & 3 \end{bmatrix}$$ $$A^{-1} = \frac{1}{|A|} (adj \cdot A) = \begin{bmatrix} 2 & 1 & -1 \\ 0 & 2 & 1 \\ 5 & 2 & -3 \end{bmatrix}$$ (v) Solution: $$(v)|A| = \begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$$ $$|A| = \begin{vmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{vmatrix}$$ $$= 2(6-2) - 2(2-1) + 1(2-3)$$ $$= 8-2-1=5$$ Cofactor of 2 is $$=+$$ (6-2) $=$ 4 Cofactor of 2 is =- $$(2-1) = -1$$ cofactor of 1 is $$=+(2-3) = -1$$ cofactor of 1 is =- $$(2-2) = -2$$ cofactor of 3 is $$=+(4-1) = 3$$ cofactor of 1 is =- $$(4-2) = -2$$ $$[Aij] = \begin{bmatrix} 4 & -1 & -1 \\ -2 & 3 & -2 \\ -1 & -1 & 4 \end{bmatrix}$$ (adj. A) = $$(Aij)T = \begin{bmatrix} 4 & -2 & -1 \\ -1 & 3 & -1 \\ -1 & -2 & 4 \end{bmatrix}$$ $$A^{4} = \frac{1}{|A|} (adj \cdot A) = \frac{1}{5} \begin{bmatrix} 4 & -2 & -1 \\ -1 & 3 & -1 \\ -1 & -2 & 4 \end{bmatrix}$$ cofactor of 1 is =+ (2-3) = -1 cofactor of 2 is =- (2-1) = -2 cofactor of 2 is =+ (6-2) = 4 $$\begin{bmatrix} Aij \\ \end{bmatrix} = \begin{bmatrix} 4 & -1 & -1 \\ -2 & 3 & -2 \\ -1 & -1 & 4 \end{bmatrix}$$ (adj. A) = $(Aij)T =
\begin{bmatrix} 4 & -2 & -1 \\ -1 & 3 & -1 \\ -1 & -2 & 4 \end{bmatrix}$ $$A^{3} = \frac{1}{1A} (adj. A) = \frac{1}{5} \begin{bmatrix} 4 & -2 & -1 \\ -1 & 3 & -1 \\ -1 & -2 & 4 \end{bmatrix}$$ 5. if A = $\begin{bmatrix} 5 & 2 \\ 7 & 3 \end{bmatrix}$ and B = $\begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix}$ verify that (i) $(AB)^{-1} = B^{-1}A^{-1}$ (ii) $(AB)^{T} = B^{T}A^{T}$ Solution: (i) A = $\begin{bmatrix} 5 & 2 \\ 7 & 3 \end{bmatrix}$; B = $\begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix}$ = $\begin{bmatrix} 10 - 2 & -5 - 2 \\ 14 - 3 & -7 + 3 \end{bmatrix}$ $$=\begin{bmatrix} 8 & -3 \\ 11 & -4 \end{bmatrix}$$ $$|A| = \begin{vmatrix} 5 & 2 \\ 7 & 3 \end{vmatrix} = 15-14 = 1$$ $$[Aij] = \begin{bmatrix} 3 & -7 \\ -2 & 5 \end{bmatrix}$$ adj .A = $$\begin{bmatrix} 3 & -2 \\ -7 & 5 \end{bmatrix}$$ $$= \begin{bmatrix} 8 & -3 \\ 11 & -4 \end{bmatrix}$$ To find A ¹ $$|A| = \begin{vmatrix} 5 & 2 \\ 7 & 3 \end{vmatrix} = 15 \cdot 14 = 1$$ $$[Aij] = \begin{bmatrix} 3 & -7 \\ -2 & 5 \end{bmatrix}$$ adj .A = $\begin{bmatrix} 3 & -2 \\ -7 & 5 \end{bmatrix}$ $$A^{-1} = \frac{1}{|A|} (adJ .A) = \begin{bmatrix} 3 & -2 \\ -7 & 5 \end{bmatrix}$$ To find B⁻¹ $$|B| = \begin{vmatrix} 2 & -1 \\ -1 & 1 \end{vmatrix} = 2 \cdot 1 = 1$$ $$[Bij] = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$$ adj . B = $\begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$ $$B^{1} = \frac{1}{|B|} (adj .B) = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$$ $$|B| = \begin{vmatrix} 2 & -1 \\ -1 & 1 \end{vmatrix} = 2-1 = 1$$ $$[Bij] = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$$ adj. B = $$\begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$$ $$B^{-1} = \frac{1}{|B|} \text{ (adj.B)} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$$ $$B^1 A^1 = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 3 & -2 \\ -7 & 5 \end{bmatrix}$$ $$= \begin{bmatrix} 3-7 & -2+5 \\ 3-14 & -2+10 \end{bmatrix} \dots 1$$ $$|AB| = \begin{vmatrix} 8 & -3 \\ 11 & -4 \end{vmatrix} = 32+33=1$$ Matrix of cofactor of(AB) = $$\begin{bmatrix} -4 & -11 \\ 3 & 8 \end{bmatrix}$$ Therefore adj.(AB) = $$\begin{bmatrix} -4 & 3 \\ -11 & 8 \end{bmatrix}$$ Therefore $$(AB)^{-1} = \frac{1}{|A|} (adj AB) = \begin{bmatrix} -4 & 3 \\ -11 & 8 \end{bmatrix}$$ (ii) $$(AB)^T = \begin{bmatrix} 8 & 11 \\ -3 & -4 \end{bmatrix}$$(3) $$B^{1} A^{1} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 3 & -2 \\ -7 & 5 \end{bmatrix}$$ $$= \begin{bmatrix} 3-7 & -2+5 \\ 3-14 & -2+10 \end{bmatrix} \dots 1$$ $$To find (AB)^{1}$$ $$|AB| = \begin{vmatrix} 8 & -3 \\ |11 & -4 \end{vmatrix} = 32+33=1$$ $$Matrix of cofactor of (AB) = \begin{bmatrix} -4 & -11 \\ 3 & 8 \end{bmatrix}$$ $$Therefore adj. (AB) = \begin{bmatrix} -4 & 3 \\ -11 & 8 \end{bmatrix}$$ $$Therefore (AB)^{-1} = \frac{1}{|A|} (adj AB) = \begin{bmatrix} -4 & 3 \\ -11 & 8 \end{bmatrix}$$ $$From (1) and) (2) (AB)^{T} = B^{T}A^{T}$$ $$(ii) (AB)^{T} = \begin{bmatrix} 8 & 11 \\ -3 & -4 \end{bmatrix} \dots (3)$$ $$Also B^{T}A^{T} = \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 5 & 7 \\ 2 & 3 \end{bmatrix}$$ $$= \begin{bmatrix} 10-2 & 14-3 \\ -5+2 & -7+3 \end{bmatrix} = \begin{bmatrix} 8 & 11 \\ -3 & -4 \end{bmatrix} \dots (4)$$ $$From (3) and (4) we get (AB)^{T} = B^{T}A^{T}$$ 6.find the inverse of the matrix $A = \begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix}$ $$A = \begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix}$$ $$\begin{vmatrix} A & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{vmatrix}$$ Cofactor of 3 is =+(-3+4) = 1 Cofactor of $$-3$$ is $=-(2-0) = -2$ Cofactor of 4 is $$=+(-2-0) = -2$$ Cofactor of 2 is =- $$(-3+4)=-1$$ cofactor of -3 is =+ $$(3-0)$$ = 3 cofactor of 4 is =- $$(-3-0) = 3$$ cofactor of 0 is $$=+(-12+12)=0$$ cofactor of -1 is =- $$(12-8) = -4$$ cofactor of 1 is $$=+(-9+6) = -3$$ $$Aij = \begin{bmatrix} 1 & -2 & -2 \\ -1 & 3 & 3 \\ 0 & -4 & -3 \end{bmatrix}$$ (adj. A) = $$(Aij)T = \begin{bmatrix} -1 & -1 & 0 \\ -2 & 3 & -4 \\ -2 & 3 & -3 \end{bmatrix}$$ $$A \stackrel{1}{\models} \frac{1}{A} \text{ (adj. A)} = \begin{bmatrix} 1 & -1 & 0 \\ -2 & 3 & -4 \\ -2 & 3 & -3 \end{bmatrix}$$ $$Aij = \begin{bmatrix} 1 & -2 & -2 \\ -1 & 3 & 3 \\ 0 & -4 & -3 \end{bmatrix}$$ $$(adj. A) = (Aij)T = \begin{bmatrix} -1 & -1 & 0 \\ -2 & 3 & -4 \\ -2 & 3 & -3 \end{bmatrix}$$ $$\bar{A}^{1} \models | \frac{1}{4} (adj. A) = \begin{bmatrix} 1 & -1 & 0 \\ -2 & 3 & -4 \\ -2 & 3 & -3 \end{bmatrix}$$ $$To find that A^{3} = A^{-1}$$ $$A^{2} = \begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix}$$ $$= \begin{bmatrix} 9 - 6 + 0 & -9 + 9 - 4 & 12 - 12 + 4 \\ 6 - 6 + 0 & -6 + 9 - 4 & 8 - 12 + 4 \\ 0 - 2 + 0 & 0 + 3 - 1 & 0 - 4 + 1 \end{bmatrix}$$ $$= \begin{bmatrix} 3 & -4 & 4 \\ 0 & -1 & 0 \\ -2 & 2 & -3 \end{bmatrix}$$ $$A^{3} = \begin{bmatrix} 3 & -4 & 4 \\ 0 & -1 & 0 \\ -2 & 2 & -3 \end{bmatrix} \begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix}$$ $$= \begin{bmatrix} 9 - 8 + 0 & -9 + 12 - 4 & 12 - 16 + 4 \\ 0 - 2 + 0 & 0 + 3 + 0 & 0 - 4 + 0 \\ -6 + 4 + 0 & 6 - 6 + 3 & -8 + 8 - 3 \end{bmatrix}$$ $$= \begin{bmatrix} 1 & -1 & 0 \\ -2 & 3 & -4 \\ -2 & 3 & -3 \end{bmatrix}$$ $$A^{3} = \overline{A}^{1}$$ 7). Show that the adjoint of $$A = \begin{bmatrix} -1 & -2 & -2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{bmatrix}$$ is $3A^{T}$ $$A = \begin{bmatrix} -1 & -2 & -2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{bmatrix}$$ Cofactor of $$-1$$ is $=+(1-4) = -3$ Cofactor of $$-2$$ is $=-(2+4) = -6$ Cofactor of $$-2$$ is $=+(-4-2) = -6$ Cofactor of 2 is =- $$(-2-4) = 6$$ Cofactor r of 1 is $$=+(-4+1) = 3$$ cofactor of -2 is =- $$(2+4) = -6$$ cofactor of 2 is $$=+(4+2) = 6$$ cofactor of $$-2$$ is =- $(2+4) = -6$ cofactor of 1 is $$=+(-1+4) = 3$$ $$[Aij] = \begin{bmatrix} -3 & -6 & -6 \\ 6 & 3 & -6 \\ 6 & -6 & 3 \end{bmatrix}$$ $$3A^{T} = 3\begin{bmatrix} -1 & 2 & 2 \\ -2 & 1 & -2 \\ -2 & -2 & 1 \end{bmatrix}$$ $$= \begin{bmatrix} -3 & 6 & 6 \\ -6 & 3 & -6 \\ -6 & -6 & 3 \end{bmatrix} \dots (2)$$ There for $(Adj. A) = 3A^{T}$ from (1) and (2). 8 .show that the adjoint of A = $$\begin{bmatrix} -4 & -3 & -3 \\ 1 & 0 & 1 \\ 4 & 4 & 3 \end{bmatrix}$$ is A itself . $$A = \begin{bmatrix} -4 & -3 & -3 \\ 1 & 0 & 1 \\ 4 & 4 & 3 \end{bmatrix}$$ Cofactor of $$-4$$ is $=+(0-4) = -4$ Cofactor of-3 is =- $$(3-4) = 1$$ Cofactor of $$-3$$ is $=+(4-0) = 4$ Cofactor of 1 is =- $$(-9+12) = -3$$ Cofactor r of 0 is $$=+(-12+12) = 0$$ cofactor of 1 is =- $$(-16+12) = 4$$ cofactor of 4 is $$=+(-3+0) = -3$$ cofactor of 4 is =- $$(-4+3) = 1$$ $$[Aij] = \begin{bmatrix} -4 & 1 & 4 \\ -3 & 0 & 4 \\ -3 & 1 & 3 \end{bmatrix}$$ cofactor of 3 is =+ (0+3) = 3 $$[Aij] = \begin{bmatrix} -4 & 1 & 4 \\ -3 & 0 & 4 \\ -3 & 1 & 3 \end{bmatrix}$$ $$Adj. A = (Aij)^{T} = \begin{bmatrix} -4 & 1 & 4 \\ -3 & 0 & 4 \\ -3 & 1 & 3 \end{bmatrix}^{T}$$ $$= \begin{bmatrix} -4 & -3 & -3 \\ 1 & 0 & 1 \\ 4 & 4 & 3 \end{bmatrix} = A$$ $$9. If A = \frac{1}{3} \begin{bmatrix} 2 & 2 & 1 \\ -2 & 1 & 2 \\ 1 & -2 & 2 \end{bmatrix}; P.T.A^{1} = A^{T}$$ $$A = \frac{1}{3} \begin{bmatrix} 2 & 2 & 1 \\ -2 & 1 & 2 \\ 1 & -2 & 2 \end{bmatrix} = \begin{bmatrix} \frac{2}{3} & \frac{2}{3} & \frac{1}{2} \\ -\frac{2}{3} & \frac{1}{3} & \frac{2}{3} \\ \frac{1}{3} & -\frac{2}{3} & \frac{2}{3} \end{bmatrix}$$ $$|A| = \frac{1}{27} \begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix}$$ $$= \frac{1}{27} [12 + 12 + 3] = 1$$ Cofactor of 3 is =+ (2+4) = 6 Cofactor of -3 is =- (-4-2) = 6 9. If $$A = \frac{1}{3} \begin{bmatrix} 2 & 2 & -1 \\ -2 & 1 & 2 \\ 1 & -2 & 2 \end{bmatrix}$$; P.T $A^{1} = A^{T}$ $$A = \frac{1}{3} \begin{bmatrix} 2 & 2 & 1 \\ -2 & 1 & 2 \\ 1 & -2 & 2 \end{bmatrix} = \begin{bmatrix} \frac{2}{3} & \frac{2}{3} & \frac{1}{2} \\ \frac{-2}{3} & \frac{1}{3} & \frac{2}{3} \\ \frac{1}{3} & \frac{-2}{3} & \frac{2}{3} \end{bmatrix}$$ $$|A| = \frac{1}{27} \begin{vmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{vmatrix}$$ $$=\frac{1}{27}[12+12+3]=1$$ Cofactor of 3 is $$=+(2+4) = 6$$ Cofactor of-3 is =- $$(-4-2) = 6$$ Cofactor of 4 is =+(4+-1)=3 Cofactor of 2 is =- (4+2) = -6 cofactor of -3 is =+(4-1) = 3 cofactor of 4 is =- (-4-2) = 6 cofactor of 0 is =+(4-1) = 3 cofactor of -1 is =- (4+2) = -6 cofactor of 1 is =+ (4+2)= 6 [Aij] = $$\frac{1}{9} \begin{bmatrix} 6 & 6 & 3 \\ -6 & 3 & 6 \\ 3 & -6 & 6 \end{bmatrix}$$ (adj. A) = $$(Aij)T = \frac{1}{9} \begin{bmatrix} 6 & -6 & 3 \\ 6 & 3 & -6 \\ 3 & 6 & 6 \end{bmatrix}$$ = $\frac{1}{3} \begin{bmatrix} 2 & -2 & 1 \\ 2 & 1 & -2 \\ 1 & 2 & 2 \end{bmatrix}$ $$A^{-1} = \frac{1}{|A|} (adj \cdot A) = \frac{1}{3} \begin{bmatrix} 2 & -2 & 1 \\ 2 & 1 & -2 \\ 1 & 2 & 2 \end{bmatrix} = A^{T}$$ 10.For A = $$\begin{bmatrix} -1 & 2 & -2 \\ 4 & -3 & 4 \\ 4 & -4 & 5 \end{bmatrix}$$, show that A = A 1 $$A = \begin{bmatrix} -1 & 2 & -2 \\ 4 & -3 & 4 \\ 4 & -4 & 5 \end{bmatrix}$$ $$|A| = \begin{vmatrix} -1 & 2 & -2 \\ 4 & -3 & 4 \\ 4 & -4 & 5 \end{vmatrix}$$ Cofactor of-1 is $$=+(-15+16)=1$$ Cofactor of 2 is $$=-(20-16) = -4$$ Cofactor of-2 is $$=+(-16+12) = -4$$ Cofactor of 4 is =- $$(10-8) = -2$$ cofactor of $$-3$$ is $=+(-5+8) = 3$ cofactor of 4 is =- $$(4-8) = 4$$ cofactor of 4 is $$=+$$ (8-6) $=$ 2 cofactor of $$-4$$ is =- $(-4+8) = -4$ cofactor of 5 is $$=+(3-8) = -5$$ $$Aij = \begin{bmatrix} 1 & -4 & -4 \\ -2 & 3 & 4 \\ 2 & -4 & -5 \end{bmatrix}$$ $$Aij = \begin{bmatrix} 1 & -4 & -4 \\ -2 & 3 & 4 \\ 2 & -4 & -5 \end{bmatrix}$$ $$(adj. A) = (Aij)T = \begin{bmatrix} 1 & -2 & 2 \\ -4 & 3 & -4 \\ -4 & 4 & -5 \end{bmatrix}$$ $$A^{-1} = \begin{bmatrix} 1 & -2 & 2 \\ -4 & 3 & -4 \\ -4 & 4 & -5 \end{bmatrix}$$ $$A^{-1} = \begin{bmatrix} -1 & 2 & -2 \\ 4 & -3 & 4 \\ 4 & -4 & 5 \end{bmatrix}$$ Find the adjoint of matrices: $$(i)\begin{bmatrix} a & b \\ c & d \end{bmatrix}; (ii)\begin{bmatrix} 1 & 2 & 3 \\ 0 & 5 & 0 \\ 2 & 4 & 3 \end{bmatrix};$$ Solution: $$(i) A = \begin{bmatrix} a & c \\ b & d \end{bmatrix}.$$ the matrix of cofactor $[Aij] = \begin{bmatrix} d & -c \\ -b & a \end{bmatrix}$ Therefore $adjA = (Aij)^T = \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$
$$A^{-1} = \begin{bmatrix} -1 & 2 & -2 \\ 4 & -3 & 4 \\ 4 & -4 & 5 \end{bmatrix}$$ $$(i)\begin{bmatrix} a & b \\ c & d \end{bmatrix}; (ii)\begin{bmatrix} 1 & 2 & 3 \\ 0 & 5 & 0 \\ 2 & 4 & 3 \end{bmatrix}$$ (i) $$A = \begin{bmatrix} a & c \\ b & d \end{bmatrix}$$ Therefore adjA= $$(Aij)^T = \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$ (ii) $$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \end{bmatrix}$$ cofactor of 1 is =+ (6-3) = 3cofactor of 1 is =- (3+6) = -9cofactor of 1 is =+ (-1-4) = -5cofactor of 1 is =-(3+1) = -4cofactor of 2 is =+(3-2) = 1 cofactor of 2 is =+(-3-2) = -5 cofactor of -3 is =-(-1-2) = 3 cofactor of -1 is =-(-3-1) = 4 cofactor of 3 is =+(2-1) = 1 $$Aij = \begin{bmatrix} 3 & -9 & -5 \\ -4 & 1 & 3 \\ -5 & 4 & 1 \end{bmatrix}$$ There fore adj.A = $\begin{bmatrix} 3 & -4 & -5 \\ -9 & 1 & 4 \\ -5 & 3 & 1 \end{bmatrix}$ 2. Find the adjoint of the matrix $A = \begin{bmatrix} -1 & 2 \\ 1 & -4 \end{bmatrix}$. and verify the result. $A(adj.A) = (adj.A)A = |A|I_2$ Solution $$A = \begin{bmatrix} -1 & 2 \\ 1 & -4 \end{bmatrix}$$. $A = \begin{vmatrix} -1 & 2 \\ 1 & -4 \end{vmatrix} = 4-2 = 2$ the matrix of cofactor $$[Aij] = \begin{bmatrix} -4 & -1 \\ -2 & -1 \end{bmatrix}$$ There fore adjA= $$(Aij)^T = \begin{bmatrix} -4 & -2 \\ -1 & -1 \end{bmatrix}$$ $$A(adj.A) = \begin{bmatrix} -1 & 2 \\ 1 & -4 \end{bmatrix} \begin{bmatrix} -4 & -2 \\ -1 & -1 \end{bmatrix}$$ $$= \quad = 2\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = |A|I_2$$ $$(adj.A)A = \begin{bmatrix} -4 & -2 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} -1 & 2 \\ 1 & -4 \end{bmatrix}$$ $$= \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} = 2 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = |A|I_2$$ Hence $$A(adj.A) = (adj.A)A = |A|I_2$$ 3.find the adjoint of matrix $$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \end{bmatrix}$$ and verify the result. $$A(adj.A) = (adj.A)A = |A|I.$$ Solution: $$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \end{bmatrix}$$ $$|A| = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \end{vmatrix}$$ $$= 1(6-3) - 1(3+6) + 1(-1-4)$$ $$= 3-9-5 = -11$$ cofactor of 1 is =+ (6-3) = 3cofactor of 1 is =- (3+6) = -9cofactor of 1 is =+ (-1-4) = -5cofactor of 1 is =-(3+1) = -4cofactor of 2 is =+(3-2) = 1cofactor of -3 is =-(-1-2) = 3cofactor of 2 is =+(-3-2) = -5cofactor of -1 is =-(-3-1) = 4cofactor of 3 is =+(2-1) = 1 $$Aij = \begin{bmatrix} 3 & -9 & -5 \\ -4 & 1 & 3 \\ -5 & 4 & 1 \end{bmatrix}$$ There fore adj.A = $\begin{bmatrix} 3 & -4 & -5 \\ -9 & 1 & 4 \\ -5 & 3 & 1 \end{bmatrix}$ $$A(adj.A) = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \end{bmatrix} \begin{bmatrix} 3 & -4 & -5 \\ -9 & 1 & 4 \\ -5 & 3 & 1 \end{bmatrix}$$ \$\frac{1}{2}\frac{1}\frac{1}{2}\f $$= \begin{bmatrix} -11 & 0 & 0 \\ 0 & -11 & 0 \\ 0 & 0 & -11 \end{bmatrix}$$ $$= -11 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = (-11)I_3 = \hbar I_3$$ $$(adj.A)A = \begin{bmatrix} 3 & -4 & -5 \\ -9 & 1 & 4 \\ -5 & 3 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \end{bmatrix}$$ $$= -11 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = (-11)I_3 = |A|I_3$$ Hence A(adj.A) = (adj.A)A = |A|I_3Hence proved. 4. find the inverses of the following matrices: $$\begin{bmatrix} 3 & 1 & -1 \\ 2 & -2 & 0 \\ 1 & 2 & -1 \end{bmatrix}$$ $$A = \begin{bmatrix} 3 & 1 & -1 \\ 2 & -2 & 0 \\ 1 & 2 & -1 \end{bmatrix}$$ $$A = \begin{vmatrix} 3 & 1 & -1 \\ 2 & -2 & 0 \\ 1 & 2 & -1 \end{vmatrix} = 2 \neq 0$$ $$= \frac{1}{2} \begin{bmatrix} 3 & 1 & -1 \\ 2 & -2 & 0 \\ 3 & 2 & -1 \end{bmatrix} = 2 \neq 0$$ $$= \frac{1}{2} \begin{bmatrix} 3 & 1 & -1 \\ 2 & -2 & 0 \\ 3 & 2 & -1 \end{bmatrix} = 2 \neq 0$$ $$= \frac{1}{2} \begin{bmatrix} 3 & 1 & -1 \\ 2 & -2 & 0 \\ 3 & 2 & -1 \end{bmatrix} = 2 \neq 0$$ $$= \frac{1}{2} \begin{bmatrix} 3 & 1 & -1 \\ 2 & -2 & 0 \\ 3 & 2 & -1 \end{bmatrix} = 2 \neq 0$$ $$= \frac{1}{2} \begin{bmatrix} 3 & 1 & -1 \\ 2 & -2 & 0 \\ 3 & 2 & -1 \end{bmatrix} = 2 \neq 0$$ $$= \frac{1}{2} \begin{bmatrix} 3 & 1 & -1 \\ 2 & -2 & 0 \\ 3 & 2 & -1 \end{bmatrix} = 2 \neq 0$$ $$= \frac{1}{2} \begin{bmatrix} 3 & 1 & -1 \\ 2 & -2 & 0 \\ 3 & 2 & -1 \end{bmatrix} = 2 \neq 0$$ $$= \frac{1}{2} \begin{bmatrix} 3 & 1 & -1 \\ 2 & -2 & 0 \\ 3 & 2 & -1 \end{bmatrix} = 2 \neq 0$$ $$= \frac{1}{2} \begin{bmatrix} 3 & 1 & -1 \\ 2 & -2 & 0 \\ 3 & 2 & -1 \end{bmatrix} = 2 \neq 0$$ $$= \frac{1}{2} \begin{bmatrix} 3 & 1 & -1 \\ 2 & -2 & 0 \\ 3 & 2 & -1 \end{bmatrix} = 2 \neq 0$$ $$= \frac{1}{2} \begin{bmatrix} 3 & 1 & -1 \\ 2 & -2 & 0 \\ 3 & 2 & -1 \end{bmatrix} = 2 \neq 0$$ $$= \frac{1}{2} \begin{bmatrix} 3 & 1 & -1 \\ 2 & -2 & 0 \\ 3 & 2 & -1 \end{bmatrix} = 2 \neq 0$$ $$= \frac{1}{2} \begin{bmatrix} 3 & 1 & -1 \\ 2 & -2 & 0 \\ 3 & 2 & -1 \end{bmatrix} = 2 \neq 0$$ $$= \frac{1}{2} \begin{bmatrix} 3 & 1 & -1 \\ 2 & -2 & 0 \\ 3 & 2 & -1 \end{bmatrix} = 2 \neq 0$$ $$= \frac{1}{2} \begin{bmatrix} 3 & 1 & -1 \\ 2 & -2 & 0 \\ 3 & 2 & -1 \end{bmatrix} = 2 \neq 0$$ $$= \frac{1}{2} \begin{bmatrix} 3 & 1 & -1 \\ 2 & -2 & 0 \\ 3 & 2 & -1 \end{bmatrix} = 2 \neq 0$$ $$= \frac{1}{2} \begin{bmatrix} 3 & 1 & -1 \\ 2 & -2 & 0 \\ 3 & 2 & -1 \end{bmatrix} = 2 \neq 0$$ $$= \frac{1}{2} \begin{bmatrix} 3 & 1 & -1 \\ 2 & -2 & 0 \\ 3 & 2 & -1 \end{bmatrix} = 2 \neq 0$$ $$= \frac{1}{2} \begin{bmatrix} 3 & 1 & -1 \\ 2 & -2 & 0 \\ 3 & 2 & -1 \end{bmatrix} = 2 \neq 0$$ $$= \frac{1}{2} \begin{bmatrix} 3 & 1 & -1 \\ 3 & 2 & -1 \end{bmatrix} = 2 \neq 0$$ $$= \frac{1}{2} \begin{bmatrix} 3 & 1 & -1 \\ 3 & 2 & -1 \end{bmatrix} = 2 \neq 0$$ $$= \frac{1}{2} \begin{bmatrix} 3 & 1 & -1 \\ 3 & 2 & -1 \end{bmatrix} = 2 \neq 0$$ $$= \frac{1}{2} \begin{bmatrix} 3 & 1 & -1 \\ 3 & 2 & -1 \end{bmatrix} = 2 \neq 0$$ $$= \frac{1}{2} \begin{bmatrix} 3 & 1 & -1 \\ 3 & 2 & -1 \end{bmatrix} = 2 \neq 0$$ $$= \frac{1}{2} \begin{bmatrix} 3 & 1 & -1 \\ 3 & 2 & -1 \end{bmatrix} = 2 \neq 0$$ $$= \frac{1}{2} \begin{bmatrix} 3 & 1 & -1 \\ 3 & 2 & -1 \end{bmatrix} = 2 \neq 0$$ $$= \frac{1}{2} \begin{bmatrix} 3 & 1 & -1 \\ 3 & 2 &$$ 4. find the inverses of the following matrices: $$\begin{bmatrix} 3 & 1 & -1 \\ 2 & -2 & 0 \\ 1 & 2 & -1 \end{bmatrix}$$ $$A = \begin{bmatrix} 3 & 1 & -1 \\ 2 & -2 & 0 \\ 1 & 2 & -1 \end{bmatrix}$$ $$A = \begin{vmatrix} 3 & 1 & -1 \\ 2 & -2 & 0 \\ 1 & 2 & -1 \end{vmatrix} = 2 \neq 0$$ cofactor of 3 is $$=+ (2-0) = 2$$ cofactor of 1 is $$=$$ (-2-0) $=$ 2 cofactor of -1 is =+ $$(4+2) = 6$$ cofactor of 2 is =-(-1+2) = -1 cofactor of -2 is =+(-3+1) = -2 cofactor of 0 is =-(6-1) = -5 cofactor of 1 is =+(0-2) = -2 cofactor of 2 is =-(0+2) = -2 cofactor of -1 is =+(-6-2) = -8 $$Aij = \begin{bmatrix} 2 & 2 & 6 \\ -1 & -2 & -5 \\ -2 & -2 & -8 \end{bmatrix}$$ There fore adj.A = $$\begin{bmatrix} 2 & -1 & -2 \\ 2 & -2 & -2 \\ 6 & -5 & -8 \end{bmatrix}$$ $$\bar{A}^{-1} = \frac{1}{|A|} \text{adj } A = \frac{1}{2} \begin{bmatrix} 2 & -1 & -2 \\ 2 & -2 & -2 \\ 6 & -5 & -8 \end{bmatrix}$$ 5. if $$A = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}$$ and $B = \begin{bmatrix} 0 & -1 \\ 1 & 2 \end{bmatrix}$ verify that (i) $(AB)^{-1} = \overline{B}^{1} \overline{A}^{1}$ Solution: (i) $$A = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix} B = \begin{bmatrix} 0 & -1 \\ 1 & 2 \end{bmatrix}$$ $$AB = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 0 & -1 \\ 1 & 2 \end{bmatrix}$$ $$AB = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 0 & -1 \\ 1 & 2 \end{bmatrix}$$ $$= \begin{bmatrix} 0 + 2 & -1 + 4 \\ 0 + 1 & -1 + 2 \end{bmatrix} = \begin{bmatrix} 2 & 3 \\ 1 & 1 \end{bmatrix}$$ $$\text{To find } A^{-1}$$ $$|AB| = \begin{bmatrix} 2 & 3 \\ 1 & 1 \end{bmatrix} = 2 - 3 = -1$$ $$[Aij] = \begin{bmatrix} 1 & -1 \\ -2 & 1 \end{bmatrix}$$ $$\text{adj } A = \begin{bmatrix} 1 & -2 \\ -1 & 1 \end{bmatrix}$$ $$A^{1} = \begin{bmatrix} 1 \\ A \end{bmatrix} \text{ adj } A = \begin{bmatrix} -1 & 2 \\ 1 & -1 \end{bmatrix}$$ $$\text{To find } B^{-1}$$ $$|B| = \begin{bmatrix} 0 & -1 \\ 1 & 2 \end{bmatrix} = 0 + 1 = 1$$ $$[Bij] = \begin{bmatrix} 2 & -1 \\ 1 & 0
\end{bmatrix}$$ $$\text{adj } B = \begin{bmatrix} 2 & 1 \\ -1 & 0 \end{bmatrix}$$ $$B^{1} = \frac{1}{|B|} \text{ adj } B = \begin{bmatrix} 2 & 1 \\ -1 & 0 \end{bmatrix}$$ $$B^{2} = \frac{1}{|B|} \text{ adj } B = \begin{bmatrix} 2 & 1 \\ -1 & 0 \end{bmatrix}$$ $$\begin{vmatrix} AB \end{vmatrix} = \begin{vmatrix} 2 & 3 \\ 1 & 1 \end{vmatrix} = 2-3 = -1$$ $$[Aij] = \begin{bmatrix} 1 & -1 \\ -2 & 1 \end{bmatrix}$$ adj .A = $$\begin{bmatrix} 1 & -2 \\ -1 & 1 \end{bmatrix}$$ $$A^{1} = \frac{1}{|A|} \operatorname{adj} A = \begin{bmatrix} -1 & 2 \\ 1 & -1 \end{bmatrix}$$ $$|B| = \begin{vmatrix} 0 & -1 \\ 1 & 2 \end{vmatrix} = 0+1=1$$ $$[Bij] = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix}$$ $$adj . B = \begin{bmatrix} 2 & 1 \\ -1 & 0 \end{bmatrix}$$ $$B^{1} = \frac{1}{|B|} adj . B = \begin{bmatrix} 2 & 1 \\ -1 & 0 \end{bmatrix}$$ $$|AB| = \begin{vmatrix} 2 & 3 \\ 1 & 1 \end{vmatrix} = 2-3 = 1$$ Matrix of cofactor of(AB) = $$\begin{bmatrix} -1 & 1 \\ 3 & -2 \end{bmatrix}$$ Therefore adj.(AB) = $$\begin{bmatrix} -1 & 3 \\ 1 & -2 \end{bmatrix}$$ Therefore $$(AB)^{-1} = \frac{1}{|AB|} (adj AB) = \begin{bmatrix} -1 & 3 \\ 1 & -2 \end{bmatrix}$$ $$\mathbf{B}^{-1} \mathbf{A}^{-1} = \begin{bmatrix} 2 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} -1 & 2 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} -1 & 3 \\ 1 & -2 \end{bmatrix}$$ From (1) and) (2) $$(AB)^{-1} = B^{\top}A^{\top}$$ To find $(AB)^{-1}$ $|AB| = \begin{vmatrix} 2 & 3 \\ 1 & 1 \end{vmatrix} = 2-3 = 1$ Matrix of cofactor of $(AB) = \begin{bmatrix} -1 & 1 \\ 3 & -2 \end{bmatrix}$ Therefore $adj.(AB) = \begin{bmatrix} -1 & 3 \\ 1 & -2 \end{bmatrix}$ $Therefore (AB)^{-1} = \frac{1}{|AB|} (adj AB) = \begin{bmatrix} -1 & 3 \\ 1 & -2 \end{bmatrix}$ $B^{-1}A^{-1} = \begin{bmatrix} 2 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} -1 & 2 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} -1 & 3 \\ 1 & -2 \end{bmatrix}$ From (1) and) (2) $(AB)^{-1} = B^{-1}A^{-1}$ EXERCISE 1:2 Solve by matrix inversion method each of the following system of linear equations: 1. (i) 2x - y = 7, 3x - 2y = 11Solution: 2x - y = 7 3x - 2y = 11 AX = B $A = \begin{bmatrix} 2 & -1 \\ 3 & -2 \end{bmatrix}$ 30 | MUARATHIOHASAMAM MATRIC HIGHER STCONDARY SCHOOL, ARAKKONAM - 12 **MATRIS 6 & 10 MARKS $$1.(i) 2x-y = 7, 3x-2y = 11$$ $$2x-y = 7$$ $$3x-2y = 11$$ $$A = \begin{bmatrix} 2 & -1 \\ 3 & -2 \end{bmatrix}$$ $$|A| = \begin{vmatrix} 2 & -1 \\ 3 & -2 \end{vmatrix} = -4+3 = -1$$ $$X = \overline{A}^{1}B$$ (Aij) = $$\begin{bmatrix} 2 & -1 \\ 3 & -2 \end{bmatrix}$$ Adj.A = $$(Aij)^T = \begin{bmatrix} -2 & -1 \\ 3 & -2 \end{bmatrix}$$ $$|A|^1 = \frac{1}{A} \text{ (adj.A)} = \begin{bmatrix} 2 & -1 \\ 3 & -2 \end{bmatrix}$$ $$1(ii)$$. $7x+3y = -1$, $2x+y=0$ $$7x+3y = -1$$ $$2x+y=0$$ $$\begin{bmatrix} 7 & 3 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$$ $$A = \begin{bmatrix} 7 & 3 \\ 2 & 1 \end{bmatrix}$$ $$|A| = \begin{vmatrix} 7 & 3 \\ 2 & 1 \end{vmatrix} = 7-6 = 1$$ $$X = A^{-1}B$$ (Aij) = $$\begin{bmatrix} 1 & -2 \\ -3 & 7 \end{bmatrix}$$ $$Adj.A = (Aij)^{\mathsf{T}} = \begin{bmatrix} 1 & -3 \\ -2 & 7 \end{bmatrix}$$ $$A^{-1} = \frac{1}{|A|} \text{ (adj.A)} = \begin{bmatrix} 1 & -3 \\ -2 & 7 \end{bmatrix}$$ $$A = \begin{bmatrix} 7 & 3 \\ 2 & 1 \end{bmatrix}$$ $$|A| = \begin{bmatrix} 7 & 3 \\ 2 & 1 \end{bmatrix} = 7 - 6 = 1$$ $$X = A^{-1}B.$$ $$(Aij) = \begin{bmatrix} 1 & -2 \\ -3 & 7 \end{bmatrix}$$ $$Adj.A = (Aij)^{T} = \begin{bmatrix} 1 & -3 \\ -2 & 7 \end{bmatrix}$$ $$A^{-1} = \begin{bmatrix} 1 \\ A \end{bmatrix} (adj.A) = \begin{bmatrix} 1 \\ -2 & 7 \end{bmatrix}$$ $$X = \begin{bmatrix} 1 & -3 \\ -2 & 7 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} -1 + 0 \\ 2 + 0 \end{bmatrix} = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$$ $$X = -1, y = 2.$$ 2. $$x + y + z = 9, 2x + 5y + 7z = 52, 2x + y - z = 0.$$ Solution: $$x + y + z = 9$$ $$2x + 5y + 7z = 52$$ $$2x + y - z = 0$$ $$\begin{bmatrix} 1 & 1 & 1 \\ 2 & 5 & 7 \\ 2 & 1 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 9 \\ 52 \\ 0 \end{bmatrix}$$ It is of the form AX =B, $$3z \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 2 & 3 & 3 \end{bmatrix} \begin{bmatrix} x \\ 3z \end{bmatrix} \begin{bmatrix} 3z \\ 3z \end{bmatrix}$$ RIAMATHICHASAMAR MATRIC HIGHER SECONDARY SCHOOLARAKKONAM - 12" MATRIS 6 & 10 MARKS 2. $$x+y+z=9$$, $2x+5y+7z=52$, $2x+y-z=0$. $$2x+5v+7z = 52$$ $$2x+y-z=0$$ $$\begin{bmatrix} 1 & 1 & 1 \\ 2 & 5 & 7 \\ 2 & 1 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 9 \\ 52 \\ 0 \end{bmatrix}$$ $$X = \overline{A}^{1}B.$$ $$A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 5 & 7 \\ 2 & 1 & -1 \end{bmatrix}$$ $$|A| = \begin{vmatrix} 1 & 1 & 1 \\ 2 & 5 & 7 \\ 2 & 1 & -1 \end{vmatrix}$$ $$= 1(-5-7)-1(-2-14)+1(2-10)$$ $$= -12+16-8 = -4$$ Cofactor of 1 is =+ $$(-5-7)$$ = -12 Cofactor of 1 is =- $$(-2-14) = 16$$ Cofactor of 1 is $$=+(2-10) = -8$$ Cofactor of 2 is =- $$(-1-1) = 2$$ Cofactor of5 is $$=+(-1-2) = -5$$ Cofactor of 7 is = $$-(1-2) = 1$$ Cofactor of 2 is $$=+(7-5) = 2$$ Cofactor of 1 is =- $$(7-2) = -3$$ Cofactor of $$-1$$ is $=+$ (5-2) $=$ 3 $$Aij = \begin{bmatrix} -12 & 16 & -8 \\ 2 & -5 & 1 \\ 2 & -3 & 3 \end{bmatrix}$$ (adj. A) = $$(Aij)T = \begin{bmatrix} -12 & 2 & 2 \\ 16 & -3 & -5 \\ -8 & 1 & 3 \end{bmatrix}$$ $$A^{-1} = \frac{1}{|A|} (adj \cdot A) = \frac{1}{-4} \begin{bmatrix} 12 & 2 & 2 \\ 16 & -3 & -5 \\ -8 & 1 & 3 \end{bmatrix}$$ $$\begin{bmatrix} -12 & 2 & 2 \end{bmatrix}$$ $$X = \frac{1}{4} \begin{bmatrix} -12 & 2 & 2 \\ 16 & -3 & -5 \\ -8 & 1 & 3 \end{bmatrix} \begin{bmatrix} 9 \\ 52 \\ 0 \end{bmatrix}$$ Aij = $$\begin{bmatrix} -12 & 16 & -8 \\ 2 & -5 & 1 \\ 2 & -3 & 3 \end{bmatrix}$$ (adj. A) = $(Aij)T = \begin{bmatrix} -12 & 2 & 2 \\ 16 & -3 & -5 \\ -8 & 1 & 3 \end{bmatrix}$ $$A^{-1} = \begin{bmatrix} -1 & 2 & 2 & 2 \\ 16 & -3 & -5 \\ -8 & 1 & 3 \end{bmatrix}$$ $$X = \begin{bmatrix} -12 & 2 & 2 & 2 \\ 16 & -3 & -5 \\ -8 & 1 & 3 \end{bmatrix} \begin{bmatrix} 9 \\ 52 \\ -8 & 1 & 3 \end{bmatrix}$$ $$X = \begin{bmatrix} 1 & -12 & 2 & 2 & 2 \\ 16 & -3 & -5 & -5 \\ -8 & 1 & 3 \end{bmatrix} \begin{bmatrix} 9 \\ 52 \\ 2 \end{bmatrix}$$ $$X = \begin{bmatrix} 1 & 108 & -104 & 0 \\ -144 & 156 & 0 \\ 72 & -52 & 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 4 \\ 20 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix}$$ $$X = 1, Y = 3, Z = 5$$ 2. $2x - y + z = 7$, $3x + y - 5z = 13$, $x + y + z = 5$ Solution: $2x - y + z = 7$ $3x + y - 5z = 13$ $x + y + z = 5$ 2. $$2x-y+z=7$$, $3x+y-5z=13$, $x+y+z=5$ $$3x+y-5z = 13$$ $$x+y+z=5$$ $$\begin{bmatrix} 2 & -1 & 1 \\ 3 & 1 & -5 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 7 \\ 13 \\ 5 \end{bmatrix}$$ It is of the form AX = B, $$X = A^{-1}B.$$ $$A = \begin{bmatrix} 2 & -1 & 1 \\ 3 & 1 & -5 \\ 1 & 1 & 1 \end{bmatrix}$$ $$\begin{vmatrix} A \\ A \end{vmatrix} = \begin{vmatrix} 2 & -1 & 1 \\ 3 & 1 & -5 \\ 1 & 1 & 1 \end{vmatrix}$$ $$= 2(1+5) + 1(3+5) + 1(3-1)$$ Cofactor of 2 is $$=+ (1+5) = 6$$ Cofactor of-1 is =- $$(3+5) = -8$$ Cofactor of 1 is $$=+(3-1) = 2$$ Cofactor of 3 is =- $$(-1-1) = 2$$ Cofactor of 1 is $$=+(2-1) = 1$$ Cofactor of -5 is =- $$(2+1) = -3$$ Cofactor of 1 is =+ $$(5-1) = 4$$ Cofactor of 1 is =- $$(-10-3) = 13$$ $$Aij = \begin{bmatrix} 6 & -8 & 2 \\ 2 & 1 & -3 \\ 4 & 13 & 5 \end{bmatrix}$$ (adj. A) = $$(Aij)T = \begin{bmatrix} 6 & 2 & 4 \\ -8 & 1 & 13 \\ 2 & -3 & 5 \end{bmatrix}$$ Cofactor of 1 is =+ (2+3) = 5 $$Aij = \begin{bmatrix} 6 & -8 & 2 \\ 2 & 1 & -3 \\ 4 & 13 & 5 \end{bmatrix}$$ $$(adj. A) = (Aij)T = \begin{bmatrix} 6 & 2 & 4 \\ -8 & 1 & 13 \\ 2 & -3 & 5 \end{bmatrix}$$ $$A^{-1} = \begin{bmatrix} -1 \\ -1AI \end{bmatrix} (adj. A) = \frac{1}{22} \begin{bmatrix} 6 & 2 & 4 \\ -8 & 1 & 13 \\ 2 & -3 & 5 \end{bmatrix}$$ $$X = \frac{1}{22} \begin{bmatrix} 6 & 2 & 4 \\ -8 & 1 & 13 \\ 2 & -3 & 5 \end{bmatrix} \begin{bmatrix} 7 \\ 13 \\ 2 \end{bmatrix}$$ $$= \frac{1}{22} \begin{bmatrix} 42 + 26 + 20 \\ -56 + 13 + 65 \\ 14 - 39 + 25 \end{bmatrix}$$ $$= \frac{1}{22} \begin{bmatrix} 88 \\ 22 \\ 22 \\ 0 \end{bmatrix} = \begin{bmatrix} 4 \\ 1 \\ 0 \end{bmatrix}$$ $$X = 4, y = 1, z = 0$$ $$5. x - 3y - 8z + 10 = 0, 3x + y = 4, 2x + 5y + 6z = 13$$ Solution: $x - 3y - 8z + 10 = 0$ $$3x + y = 4$$ $$2x + 5y + 6z = 13$$ $$X = \frac{1}{22} \begin{bmatrix} 6 & 2 & 4 \\ -8 & 1 & 13 \\ 2 & -3 & 5 \end{bmatrix} \begin{bmatrix} 7 \\ 13 \\ 5 \end{bmatrix}$$ $$= \frac{1}{22} \begin{bmatrix} 42 + 26 + 20 \\ -56 + 13 + 65 \\ 14 - 39 + 25 \end{bmatrix}$$ $$=\frac{1}{22} \begin{pmatrix} 88\\22\\0 \end{pmatrix} = \begin{pmatrix} 4\\1\\0 \end{pmatrix}$$ $$X = 4$$, $y = 1$, $z = 0$ 5. $$x-3y-8z+10 = 0$$, $3x+y = 4$, $2x+5y+6z = 13$ Solution: $$x-3y-8z+10=0$$ $$3x + y = 4$$ $$2x+5v+6z = 13$$ $$\begin{bmatrix} 1 & -3 & -8 \\ 3 & 1 & 0 \\ 2 & 5 & 6 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -10 \\ 4 \\ 13 \end{bmatrix}$$ It is of the form AX = B, $$X = \overline{A}^1 B$$. $$|A| = \begin{bmatrix} 1 & -3 & -8 \\ 3 & 1 & 0 \\ 2 & 5 & 6 \end{bmatrix}$$ $$A = \begin{vmatrix} 1 & -3 & -8 \\ 3 & 1 & 0 \\ 2 & 5 & 6 \end{vmatrix}$$ $$= 1(6-0) + 3(18-0) - 8(15-2)$$ Cofactor of 1 is = $$+$$ (6-0) = 6 Cofactor of $$-3$$ is =- $(18-0)$ = -18 Cofactor of $$-8$$ is $=+(15-2) = 13$ Cofactor of 3 is =- $$(-40+18) = -22$$ Cofactor of 1 is =+ $$(6+16)$$ = 22 Cofactor of 0 is =- $$(5+6) = -11$$ Cofactor of 2 is $$=+(0+8) = 8$$ Cofactor of 5 is =- (0+24) = -24 Cofactor of 6 is = + (1+9) = 10 $$Aij = \begin{bmatrix} 6 & -18 & 13 \\ -22 & 22 & -11 \\ 8 & -24 & 10 \end{bmatrix}$$ (adj. A) = $$(Aij)T = \begin{bmatrix} 6 & -22 & 8 \\ -18 & 22 & -24 \\ 13 & -11 & 10 \end{bmatrix}$$ $$A^{-1} = \frac{1}{|A|} (adj \cdot A) = \frac{1}{-44} \begin{bmatrix} 6 & -22 & 8 \\ -18 & 22 & -24 \\ 13 & -11 & 10 \end{bmatrix}$$ $$X = \frac{1}{-44} \begin{bmatrix} 6 & -22 & 8 \\ -18 & 22 & -24 \\ 13 & -11 & 10 \end{bmatrix} \begin{bmatrix} -10 \\ 4 \\ 13 \end{bmatrix}$$ $$=\frac{1}{-44}\begin{bmatrix} -44\\ -44\\ -44\end{bmatrix}$$ [1] $$=\begin{bmatrix}1\\1\\1\end{bmatrix}$$
$$X = 1$$, $y = 1$, $z = 1$. Solve by matrix inversion method each of the following system of linear equations: x+y=3, 2x+3y=8 ِ اللهِ ا Solution: $$x+v=3$$ $$2x+3y=8$$ $$AX = B$$ $$2x+3y=8$$ $$AX=B$$ $$A = \begin{bmatrix} 1 & 1 \\ 2 & 3 \end{bmatrix}$$ $$\begin{pmatrix} 2 & -1 \\ 3 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{bmatrix} 7 \\ 1 \end{bmatrix}$$ $$|A| = \begin{bmatrix} 1 \\ 2 & 3 \end{bmatrix} = 3 \cdot 2 = 1$$ $$X = A^{T}B.$$ $$(Aij) = \begin{bmatrix} 3 & -2 \\ -1 & 1 \end{bmatrix}$$ $$Adj.A = (Aij)^{T} = \begin{bmatrix} 3 & -1 \\ -2 & 1 \end{bmatrix}$$ $$A^{T} = \frac{1}{|A|} (adj.A) = \begin{bmatrix} 3 & -1 \\ -2 & 1 \end{bmatrix}$$ $$x^{T} = \begin{bmatrix} 2 & -1 \\ 3 & -2 \end{bmatrix} \begin{bmatrix} 7 \\ 1 \end{bmatrix} = \begin{bmatrix} 14 - 11 \\ 21 - 22 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$ $$x = 1, y = 2$$ $$2. \quad 2x-y+3z = 9, x+y+z = 6, x-y+z = 2.$$ Solution: $$2x-y+3z = 9$$ $$x+y+z = 6$$ $$x-y+z = 2.$$ $$39$$ BIARARTHIONASAMAR MATRICHIGHER STCONDARY SCHOOLARRAKKONAM - 12" MATRIS 6 & 10 MARKS 2. $$2x-y+3z = 9$$, $x+y+z = 6$, $x-y+z = 2$ Solution: $$2x-y+3z = 9$$ $$x+y+z=6$$ $$x-y+z=2$$. $$\begin{bmatrix} 2 & -1 & 3 \\ 1 & 1 & 1 \\ 1 & -1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 9 \\ 6 \\ 2 \end{bmatrix}$$ It is of the form AX = B, $$X = A^{-1}B.$$ $$A = \begin{bmatrix} 2 & -1 & 3 \\ 1 & 1 & 1 \\ 1 & -1 & 1 \end{bmatrix}$$ $$\begin{vmatrix} A & | & 2 & -1 & 3 \\ 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & 1 \end{vmatrix}$$ $$= 2(1+1)+1(1-1)+3(-1-1)$$ $$= 4+0-6 = -2 \neq 0$$ Cofactor of 2 is $$=+(1+1) = 2$$ Cofactor of -1 is =- $$(1-1) = 0$$ Cofactor of 3 is $$=+(-1-1) = -2$$ Cofactor of 1 is =- $$(-1+3) = -2$$ Cofactor of 1 is = $$+(2-3) = -1$$ Cofactor of 1 is =- $$(-2+1) = 1$$ Cofactor of 1 is =+ $$(-1-3) = -4$$ Cofactor of -1 is =- $$(2-3) = 1$$ Cofactor of 1 is =+ $$(2+1) = 3$$ $$Aij = \begin{bmatrix} 2 & 0 & -2 \\ -2 & -1 & 1 \\ -4 & 1 & 3 \end{bmatrix}$$ $$Aij = \begin{bmatrix} 2 & 0 & -2 \\ -2 & -1 & 1 \\ -4 & 1 & 3 \end{bmatrix}$$ $$(adj. A) = (Aij)T = \begin{bmatrix} 2 & -2 & -4 \\ 0 & -1 & 1 \\ -2 & 1 & 3 \end{bmatrix}$$ $$A^{-1} = \begin{bmatrix} 1 \\ 1/4 \end{bmatrix} (adj. A) = \frac{1}{-2} \begin{bmatrix} 2 & -2 & -4 \\ 0 & -1 & 1 \\ -2 & 1 & 3 \end{bmatrix}$$ $$\begin{bmatrix} x \\ y \\ -\frac{1}{-2} \end{bmatrix} \begin{bmatrix} 2 & -2 & -4 \\ 0 & -1 & 1 \\ -2 & 1 & 3 \end{bmatrix} \begin{bmatrix} 2 & -2 & -4 \\ 0 & -1 & 1 \\ -2 & 1 & 3 \end{bmatrix}$$ $$x=1, y=2, z=3$$ RANK OF MATRIX Find the rank of the following matrices: $$1 \begin{bmatrix} 1 & 1 & -1 \\ 3 & -2 & 3 \\ 2 & -3 & 4 \end{bmatrix}$$ $$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{-2} \begin{bmatrix} 2 & -2 & -4 \\ 0 & -1 & 1 \\ -2 & 1 & 3 \end{bmatrix} \begin{bmatrix} 9 \\ 6 \\ 2 \end{bmatrix} = \frac{1}{-2} \begin{bmatrix} -2 \\ -4 \\ -6 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$ $$x=1, y=2, z=3$$ $$1. \begin{bmatrix} 1 & 1 & -1 \\ 3 & -2 & 3 \\ 2 & -3 & 4 \end{bmatrix}$$ Solution: $$A = \begin{bmatrix} 1 & 1 & -1 \\ 3 & -2 & 3 \\ 2 & -3 & 4 \end{bmatrix}$$ $$R2 \rightarrow R_2-3R_1; R_3 \rightarrow R_3-2R_1$$ $$\sim \begin{bmatrix} 1 & 1 & -1 \\ 0 & -5 & 6 \\ 0 & -5 & 6 \end{bmatrix}$$ $$R_3 \rightarrow R_3 - R_2$$ $$\begin{bmatrix} 1 & 1 & -1 \\ 0 & -5 & 6 \\ 0 & 0 & 0 \end{bmatrix}$$ Solution: $A = \begin{bmatrix} 1 & 1 & -1 \\ 3 & -2 & 3 \\ 2 & -3 & 4 \end{bmatrix}$ $R2 \rightarrow R_2 \rightarrow R_3 - 3R_1; R_3 \rightarrow R_3 - 2R_1$ $\begin{bmatrix} 1 & 1 & -1 \\ 0 & -5 & 6 \\ 0 & -5 & 6 \end{bmatrix}$ $R_3 \rightarrow R_3 - R_2$ $\begin{bmatrix} 1 & 1 & -1 \\ 0 & -5 & 6 \\ 0 & 0 & 0 \end{bmatrix}$ The last equivalent matrix is in the echelon form. it has two non zero rows. Therefore p(A) = 22). $\begin{bmatrix} 6 & 12 & 6 \\ 1 & 2 & 1 \\ 4 & 8 & 4 \end{bmatrix}$ Solution: $A = \begin{bmatrix} 6 & 12 & 6 \\ 1 & 2 & 1 \\ 4 & 8 & 4 \end{bmatrix}$ $R1 \rightarrow \frac{1}{6}R1; R_3 \rightarrow \frac{1}{4}R3$ $\begin{bmatrix} 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \end{bmatrix}$ $R2 \rightarrow R_2 - R_1; R_3 \rightarrow R_3 - R_1$ 2). $$\begin{bmatrix} 6 & 12 & 6 \\ 1 & 2 & 1 \\ 4 & 8 & 4 \end{bmatrix}$$ Solution: $$A = \begin{bmatrix} 6 & 12 & 6 \\ 1 & 2 & 1 \\ 4 & 8 & 4 \end{bmatrix}$$ R1 $$\rightarrow \frac{1}{6}$$ R1; R₃ $\rightarrow \frac{1}{4}$ R3 $$\begin{bmatrix} 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \end{bmatrix}$$ $$R2 \rightarrow R_2 - R_1$$; $R_3 \rightarrow R_3 - R_1$ $$\sim \begin{bmatrix} 1 & 1 & -1 \\ 0 & -5 & 6 \\ 0 & 0 & 0 \end{bmatrix}$$ $$6. \begin{pmatrix} 1 & -2 & 3 & 4 \\ -2 & 4 & -1 & -3 \\ -1 & 2 & 7 & -6 \end{pmatrix}$$ $$let A = \begin{pmatrix} 1 & -2 & 3 & 4 \\ -2 & 4 & -1 & -3 \\ -1 & 2 & 7 & -6 \end{pmatrix}$$ 1 find the rank of the matrix $$\begin{bmatrix} 1 & 1 & -1 \\ 2 & -3 & 4 \\ 3 & -2 & 3 \end{bmatrix}$$ Solution: $$A = \begin{bmatrix} 1 & 1 & -1 \\ 2 & -3 & 4 \\ 3 & -2 & 3 \end{bmatrix}$$ $$R2 \rightarrow R_2-2R_1 ; R_3 \rightarrow R_3-3R_1$$ $$\begin{bmatrix} 1 & 1 & -1 \\ 0 & -5 & 6 \\ 0 & 0 & 0 \end{bmatrix}$$ 2. find the rank of the matrix: $$\begin{pmatrix} 1 & 2 & 3-1 \\ 2 & 4 & 6-2 \\ 3 & 6 & 9-3 \end{pmatrix}$$ solution : A = $$\begin{bmatrix} 1 & 2 & 3-1 \\ 2 & 4 & 6-2 \\ 3 & 6 & 9-3 \end{bmatrix}$$ $$R_2 \rightarrow R_2 - 2R_1$$ $R_3 \rightarrow R_3 - 2R_1$ The last equivalent matrix is in the echelon form. it has one non zero rows. Therefore p(A) = 1 3. find the rank of the matrix: $\begin{pmatrix} 4 & 2 & 1 & 3 \\ 6 & 3 & 4 & 7 \\ 2 & 1 & 0 & 1 \end{pmatrix}$ $$\begin{pmatrix} 1 & 2 & 4 & 3 \\ 4 & 3 & 6 & 7 \\ 0 & 1 & 2 & 1 \end{pmatrix} \sim C1 \leftrightarrow C3$$ $$R_2 \longrightarrow R_2 - R_1$$ $$\begin{pmatrix} 1 & 2 & 4 & 3 \\ 0 & -5 & -10 & -5 \\ 0 & 1 & 2 & 1 \end{pmatrix}$$ $$R_2 \longrightarrow \frac{1}{-5}$$ $$\begin{pmatrix} 1 & 2 & 4 & 3 \\ 0 & 1 & 2 & 1 \\ 0 & 1 & 2 & 1 \end{pmatrix}$$ $$R_3 \longrightarrow R_3 - R_2$$ $$\begin{pmatrix} 1 & 2 & 4 & 3 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$ The last equivalent matrix is in the echelon form. it has two non zero rows. Therefore p(A) = 2 1.4 (1) (Cramer's rule method) → (Determinant Method) Consider the system of non homogeneous equations of $$a_{11}x + a_{12}y = b_1$$ $$a_{21}x + a_{22}y = b_2$$ \$\display \$\disp $$let \Delta = \begin{bmatrix} a11 & a12 \\ a21 & a22 \end{bmatrix}$$ $$\Delta x = \begin{bmatrix} b1 & a12 \\ b2 & a22 \end{bmatrix}$$ $$\Delta y = \begin{bmatrix} a11 & b1 \\ a12 & b2 \end{bmatrix}$$ Then $$x = \frac{\Delta x}{\Delta}$$; $y = \frac{\Delta y}{\Delta}$ find x =value and y= value let $\Delta = \begin{bmatrix} a11 & a12 \\ a21 & a22 \end{bmatrix}$ $\Delta x = \begin{bmatrix} b1 & a12 \\ b2 & a22 \end{bmatrix}$ $\Delta y = \begin{bmatrix} a11 & b1 \\ a12 & b2 \end{bmatrix}$ Then $x = \frac{\Delta x}{\Delta}$; $y = \frac{\Delta y}{\Delta}$ find x = value and y = value Example: solve the following non homogeneous system of linear equations by determinant method. 1. 3x + 2y = 5; x + 3y = 4Solution: 3x + 2y = 5 x + 3y = 4 $\Delta = \begin{bmatrix} 3 & 2 \\ 1 & 3 \end{bmatrix}$ = 9 - 2 = 7 $\Delta x = \begin{bmatrix} 5 & 2 \\ 4 & 3 \end{bmatrix}$ = 15 - 8 = 7 $\Delta y = \begin{bmatrix} 3 & 5 \\ 1 & 4 \end{bmatrix}$ = 12 - 5 = 7 $47 \begin{bmatrix} \text{RHARATHICHASAMAR MARTINIC HIGHER SICONDARY SCHOOLARAKKONAM - 12" MARTIN 5 6 & 10 MARTINS}$ 1. $$3x+2y = 5$$; $x+3y = 4$ Solution: $$3x+2y = 5$$ $$x+3y = 4$$ $$\Delta = \begin{vmatrix} 3 & 2 \\ 1 & 3 \end{vmatrix}$$ $$= 9-2 = 7$$ $$\Delta x = \begin{vmatrix} 5 & 2 \\ 4 & 3 \end{vmatrix}$$ $$= 15-8 = 7$$ $$\Delta y = \begin{vmatrix} 3 & 5 \end{vmatrix}$$ Then $$x = \frac{\Delta x}{\Delta} = \frac{7}{7} = 1$$ $$y = \frac{\Delta y}{\Delta} = \frac{7}{7} = 1$$ find x = 1 and y = 1 2. $$2x+3y = 5$$; $4x+6y = 12$ Solution: $$2x+3y = 5$$ $$4x+6y = 12$$ $$\Delta = \begin{vmatrix} 2 & 3 \\ 4 & 6 \end{vmatrix}$$ $$\Delta x = \begin{vmatrix} 5 & 3 \\ 12 & 6 \end{vmatrix}$$ $$\Delta y = \begin{vmatrix} 2 & 5 \\ 4 & 12 \end{vmatrix}$$ $$= 24-20 = 4 = 0$$ Since $\Delta = 0$; $\Delta \neq 0$ and the system is inconsistent. 3. $$4x+5y = 9$$; $8x+10y = 18$ Solution: 4x+5y = 9 $$8x+10y = 18$$ $$\Delta = \begin{vmatrix} 4 & 5 \\ 8 & 10 \end{vmatrix}$$ $$= 40-40 = 0$$ $$\Delta x = \begin{vmatrix} 9 & 5 \\ 18 & 10 \end{vmatrix}$$ $$= 90-90 = 0$$ $$\Delta y = \begin{vmatrix} 4 & 9 \\ 8 & 18 \end{vmatrix}$$ $$=72-72=0$$ Since $\Delta = \Delta x = \Delta y = 0$ And at least one of the coefficients is non zero the system is consistent and has many solutions. Let y = k .then $$x = \frac{9-5k}{4}$$. Therefore the solution set is $(x,y) = (\frac{9-5k}{4}, k)$ where k€R 4. $$X+Y+Z=4$$; $X-Y+Z=2$; $2X+Y-Z=1$ Solution: X+Y+Z=4 $$X-Y+Z=2$$ $$2X+Y-Z=1$$ $$\Delta = \begin{vmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 2 & 1 & -1 \end{vmatrix}$$ $$= 0+3+3 = 6$$ $$\Delta x = \begin{vmatrix} 4 & 1 & 1 \\ 2 & -1 & 1 \\ 1 & 1 & -1 \end{vmatrix}$$ $$= 4(1-1)-1(-2-1)+1(2+1)$$ $$= 0+3+3 = 6$$ $$\Delta y = \begin{vmatrix} 1 & 4 & 1 \\ 1 & 2 & 1 \\ 2 & 1 & -1 \end{vmatrix}$$ $$= -3+12-3 = 6$$ $$\Delta z = \begin{vmatrix} 1 & 1 & 4 \\ 1 & -1 & 2 \\ 2 & 1 & 1 \end{vmatrix}$$ Then $$x = \frac{\Delta x}{\Delta} = \frac{6}{6} = 1$$ $$y = \frac{\Delta y}{\Delta} = \frac{6}{6} = 1$$ $$z = \frac{\Delta z}{\Delta} = \frac{12}{6} = 2$$ 5. $$2X+Y-Z=4$$; $X+Y-2Z=0$; $3X+2Y-3Z=4$ Solution: $$2X+Y-Z=4$$ $$X+Y-2Z=0$$ $$3X + 2Y - 3Z = 4$$ $$\Delta = \begin{vmatrix} 2 & 1 & -1 \\ 1 & 1 & -2 \\ 3 & 2 & -3 \end{vmatrix}$$ $$= 2(-3+4)-1(-3+6)-1(2-3)$$ $$= 2-3+1=0$$ $$\Delta x = \begin{vmatrix} 4 & 1 & -1 \\ 0 & 1 & -2 \\ 4 & 2 & -3 \end{vmatrix}$$ $$= 4(-3+4)-1(0+8)-1(0-4)$$ $$= 4-8+4 = 0$$ $$\Delta y = \begin{vmatrix} 2 & 4 & -1 \\ 1 & 0 & -2 \\ 3 & 4 & -3 \end{vmatrix}$$ $$= 2(0+8)-4(-3+6)-1(4-0)$$ $$= 16-12-4 = 0$$ $$\Delta z = \begin{vmatrix} 2 & 1 & 4 \\ 1 & 1 & 0 \\ 3 & 2 & 4 \end{vmatrix}$$ $$= 2(4-0)-1(4-0)+ 4(2-3)$$ $$= 8-4-4 = 0$$ Since $\Delta = \Delta x = \Delta y = \Delta z = 0$. the system is consistent and has many solution .also all 2x2 minor of $\Delta \neq 0$. The
system is reduced to equation. Let $$z = k$$ $$2x+y-k = 4$$ $2x+y = 4+k$ $$X + y - 2k = 0$$ $x + y = 2k$ $$\Delta = \begin{vmatrix} 2 & 1 \\ 1 & 1 \end{vmatrix}$$ $$\Delta x = \begin{vmatrix} 4+k & 1 \\ 2k & 1 \end{vmatrix}$$ $$= 4+k-2k = 4-k$$ $$\Delta y = \begin{vmatrix} 2 & 4+k \\ 1 & 2k \end{vmatrix}$$ $$=4k-4-k=3k-4$$ Then $$x = \frac{\Delta x}{\Delta} = \frac{4-k}{1} = 4-k$$ $$=\frac{\Delta y}{\Delta} = \frac{3k-4}{1} = 3k-4$$ x = 4-k and y = 3k-4 and z = k solution set is (4-k,3k-4,k) where k €R 6. $$3x+y-z=2$$; $2x-y+2z=6$; $2x+y-2z=-2$ $$3x+y-z = 2$$ $$2x-y+2z = 6$$ $$2x+y-2z = -2$$ $$\Delta = \begin{vmatrix} 3 & 1 & -1 \\ 2 & -1 & 2 \\ 2 & 1 & -2 \end{vmatrix}$$ $$= 0+8-4 = 4$$ $$\Delta x = \begin{vmatrix} 2 & 1 & -1 \\ 6 & -1 & 2 \\ -2 & 1 & -2 \end{vmatrix}$$ $$= 0+8-4 = 4$$ $$\Delta y = \begin{vmatrix} 3 & 2 & -1 \\ 2 & 6 & 2 \\ 2 & -2 & -2 \end{vmatrix}$$ $$\Delta z = \begin{vmatrix} 3 & 1 & 2 \\ 2 & -1 & 6 \\ 2 & 1 & -2 \end{vmatrix}$$ Then $$x = \frac{\Delta x}{\Delta} = \frac{4}{4} = 1$$ $$y = \frac{\Delta y}{\Delta} = \frac{8}{4} = 2$$ $$z = \frac{\Delta z}{\Delta} = \frac{12}{4} = 3$$ 7. $$X+2y+z=6$$; $3x+3y-z=3$; $2x+y-2z=-3$ Solution: $$X+2y+z=6$$ $$3x+3y-z=3$$ $$2x+y-2z = -3$$ $$\Delta = \begin{vmatrix} 1 & 2 & 1 \\ 3 & 3 & -1 \\ 2 & 1 & -3 \end{vmatrix}$$ $$= 1(-6+1)-2(-6+2)+1(3-6)$$ $$= -5+8-3 = 0$$ $$\Delta x = \begin{vmatrix} 6 & 2 & 1 \\ 3 & 3 & -1 \\ -3 & 1 & -2 \end{vmatrix}$$ $$= 6(-6+1)-2(-6-3)+1(3+9)$$ $$= -30+18+12=0$$ $$\Delta y = \begin{vmatrix} 1 & 6 & 1 \\ 3 & 3 & -1 \\ 2 & -3 & -2 \end{vmatrix}$$ $$= 1(-6-3)-6(-6+2)+1(-9-6)$$ $$= -9+24-15=0$$ $$\Delta z = \begin{vmatrix} 1 & 2 & 6 \\ 3 & 3 & 3 \\ 2 & 1 & -3 \end{vmatrix}$$ $$= 1(-9-3)-2(-9-6) + 6(3-6)$$ $$= -12+30-18 = 0$$ Since $\Delta = \Delta x = \Delta y = \Delta z = 0$. the system is consistent and has many solution .also all 2x2 minor of $\Delta \neq 0$. The system is reduced to equation. Let z = k x+2y+k=6 x+2y=6-k 3X+3y-k=3 3x+3y=3+k $\Delta = \begin{bmatrix} 1 & 2 \\ 3 & 3 \end{bmatrix}$ = 3-6=-3 $\Delta x = \begin{bmatrix} 6-k & 2 \\ 3+k & 3 \end{bmatrix}$ = 18-3k-6-2k=12-5k $\Delta y = \begin{bmatrix} 1 & 6-k \\ 3 & 3+k \end{bmatrix}$ = 3+k-18+3k=4k-15Then $x = \frac{\Delta x}{\Delta} = \frac{12-5k}{-3} = \frac{5k-12}{3}$ $= \frac{\Delta y}{\Delta} = \frac{4k-15}{-3} = \frac{15-4k}{3}$ $x = \frac{5k-12}{3}$ and $y = \frac{15-4k}{3}$ and z = ksolution set is $(\frac{5k-12}{3}, \frac{15-4k}{3}, k)$ where $k \in \mathbb{R}$. 8. 2x-y+z=2; 6x-3y+3z=6; 4x-2y+2z=4solution: 2x-y+z=2 Let $$z = k$$ $$x+2y+k = 6$$ $x+2y = 6-k$ $$3X+3y-k = 3$$ $3x+3y = 3+k$ $$\Delta = \begin{vmatrix} 1 & 2 \\ 3 & 3 \end{vmatrix}$$ $$= 3-6 = -3$$ $$\Delta x = \begin{vmatrix} 6 - k & 2 \\ 3 + k & 3 \end{vmatrix}$$ $$= 18-3k-6-2k = 12-5k$$ $$\Delta y = \begin{vmatrix} 1 & 6 - k \\ 3 & 3 + k \end{vmatrix}$$ Then $$x = \frac{\Delta x}{\Delta} = \frac{12 - 5k}{-3} = \frac{5k - 12}{3}$$ $$=\frac{\Delta y}{\Delta} = \frac{4k-15}{-3} = \frac{15-4k}{3}$$ $$x = \frac{5k-12}{3}$$ and $y = \frac{15-4k}{3}$ and $z = k$ 8. $$2x - y + z = 2$$; $6x - 3y + 3z = 6$; $4x - 2y + 2z = 4$ solution: $$2x - v + z = 2$$ $$6x - 3y + 3z = 6$$ $$4x-2y+2z=4$$ $$\Delta = \begin{vmatrix} 2 & -1 & 1 \\ 6 & -3 & 3 \\ 4 & -2 & 2 \end{vmatrix}$$ $$\Delta x = \begin{vmatrix} 2 & -1 & 1 \\ 6 & -3 & 3 \\ 4 & -2 & 2 \end{vmatrix}$$ $$= 2(-6+6)+1(12-12)+1(-12+12)$$ $$\Delta y = \begin{vmatrix} 2 & 2 & 1 \\ 6 & 6 & 3 \\ 4 & 4 & 2 \end{vmatrix}$$ $$\Delta z = \begin{vmatrix} 2 & -1 & 2 \\ 6 & -3 & 6 \\ 4 & -2 & 4 \end{vmatrix}$$ $$= 0$$ $$\Delta = \Delta x = \Delta y = \Delta z = 0$$ put $$z=k$$ then $2x-y=2-k$ let y = s , then x = $$(\frac{2-k+s}{2}, s, k)$$ where s, k $\in R$ 9. $$\frac{1}{x} + \frac{2}{y} - \frac{1}{z} = 1$$; $\frac{2}{x} + \frac{4}{y} + \frac{1}{z} = 5$; $\frac{3}{x} - \frac{2}{y} - \frac{2}{z}$ solution: let $$\frac{1}{x} = a$$; $\frac{1}{y} = b$; $\frac{1}{z} = c$. $$a + 2b - c = 2$$ $$2a + 4b + c = 5$$ $$3a - 2b - 2c = 0$$ $$\Delta = \begin{vmatrix} 1 & 2 & -1 \\ 2 & 4 & 1 \\ 3 & -2 & -2 \end{vmatrix}$$ $$= 1(-8+2)-2(-4-3)-1(-4-12)$$ $$= -6+14+16 = 24$$ all (2x2) minor are also zeros . but atleast one of Aij in $$\Delta$$ is non zero. the system is consistent and has many solution . all the three equation reduce to one solution . 2x-y+z=2 put z= k then $2x-y=2-k$ let $y=s$, then $x=(\frac{2^{-k+s}}{2},s,k)$ where $s,k\in R$ 9. $\frac{1}{x}+\frac{2}{y}-\frac{1}{z}=1$; $\frac{2}{x}+\frac{4}{y}+\frac{1}{z}=5$; $\frac{3}{x}-\frac{2}{y}-\frac{2}{z}$ solution : let $\frac{1}{x}=a$; $\frac{1}{y}=b$; $\frac{1}{z}=c$. $a+2b-c=1$ $2a+4b+c=5$ $3a-2b-2c=0$ $\Delta=\begin{vmatrix} 1 & 2 & -1 \\ 2 & 4 & 1 \\ 3 & -2 & -2 \end{vmatrix}$ $=1(-8+2)-2(-4-3)-1(-4-12)$ $=-6+14+16=24$ $\Delta a=\begin{vmatrix} 1 & 2 & -1 \\ 5 & 4 & 1 \\ 0 & -2 & -2 \end{vmatrix}$ $=1(-8+2)-2(-10-0)-1(-10-0)$ $=-6+20+10=24$ $$\Delta b = \begin{vmatrix} 1 & 1 & -1 \\ 2 & 5 & 1 \\ 3 & 0 & -2 \end{vmatrix}$$ $$= 1(-10-0)-1(-4-3)-1(0-15)$$ $$= -10+7+15 = 12$$ $$\Delta c = \begin{vmatrix} 1 & 2 & 1 \\ 2 & 4 & 5 \\ 3 & -2 & 0 \end{vmatrix}$$ $$= 10+30-16 = 24$$ a = $$\frac{\Delta a}{\Delta}$$ = $\frac{24}{24}$ = 1 => $\frac{1}{x}$ = 1 => x = 1 b = $$\frac{\Delta b}{\Delta}$$ = $\frac{12}{24}$ = $\frac{1}{2}$ => $\frac{1}{y}$ = $\frac{1}{2}$ => y = 2 $$c = \frac{\Delta c}{\Lambda} = \frac{24}{24} = 1 = \frac{1}{z} = 1 = z = 1$$ 10. a small seminar hall hold 100 chars . three different colours (red , blue , and green) of chairs are available . the cost of red chairs is Rs . 240 , cost of the blue chairs is Rs 260 the cost of the green chairs is Rs . 300 . the total cost of the chairs if Rs . 25,000 . find atleast 3 different solution of the number of chairs in each colour to be purchased . solution: let x,y,z be the no. of red, blue, green chairs. given that $$x + y + z = 100$$ $$240x + x260y + 300z = 25000$$ $$12x+13y+15z = 1250$$ $$x + y = 100 - k$$ $$x + y = 1250 - 15 k$$ $$\Delta = \begin{vmatrix} 1 & 1 \\ 12 & 13 \end{vmatrix} = 13-12 = 1$$ $$\Delta x = \begin{vmatrix} 100 - k & 1 \\ 1250 - 15k & 13 \end{vmatrix}$$ = 1300 - 13k - 1250 + 15k = 50 + 2k $$\Delta y = \begin{vmatrix} 1 & 100 - k \\ 12 & 1250 - 15k \end{vmatrix}$$ = 1250 - 15k - 1200 + 12k = 50 - 3k $$x = \frac{\Delta x}{\Delta} = \frac{50 + 2k}{1} = 50 + 2k$$ $$y = \frac{\Delta y}{\Lambda} = \frac{50 - 3k}{1} = 50 - 3k$$ $$z = k$$ the solution set is (50+2k,50-3k,k) where s, $k \in R$. $$x+2y+z=7$$; $2x-y+2z=4$; $x+y-2z=-1$ Solution: x+2y+z=7 $$2x-y+2z = 4$$ عَلِي عَلَمْ عَلَم $$x+y-2z = -1$$ $$\Delta = \begin{vmatrix} 1 & 2 & 1 \\ 2 & -1 & 2 \\ 1 & 1 & -2 \end{vmatrix} = 15$$ $$\Delta x = \begin{vmatrix} 7 & 2 & 1 \\ 4 & -1 & 2 \\ -1 & 1 & -2 \end{vmatrix} = 15$$ $$\Delta y = \begin{vmatrix} 1 & 7 & 1 \\ 2 & 4 & 2 \\ 1 & -1 & -2 \end{vmatrix} = 30$$ $$\Delta z = \begin{vmatrix} 1 & 2 & 1 \\ 2 & -1 & 2 \\ 1 & 1 & -2 \end{vmatrix} = 30$$ $$x+y-2z = -1$$ $$\Delta = \begin{vmatrix} 1 & 2 & 1 \\ 2 & -1 & 2 \\ 1 & 1 & -2 \end{vmatrix} = 15$$ $$\Delta x = \begin{vmatrix} 7 & 2 & 1 \\ 4 & -1 & 2 \\ -1 & 1 & -2 \end{vmatrix} = 15$$ $$\Delta y = \begin{vmatrix} 1 & 7 & 1 \\ 2 & 4 & 2 \\ 1 & -1 & -2 \end{vmatrix} = 30$$ $$\Delta z = \begin{vmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & -1 & -2 \end{vmatrix} = 30$$ $$Then x = \frac{\Delta x}{\Delta} = \frac{15}{15} = 1$$ $$y = \frac{\Delta y}{\Delta} = \frac{30}{15} = 2$$ $$z = \frac{\Delta x}{\Delta} = \frac{30}{15} = 2$$ $$31 \text{ Inharathidiaganara Matrix chigher secondary school Japaniskonam - 12" matrix 6.4 to marks}$$ solution is (x, y, z) = (1, 2, 2) $$x+y+2z = 6$$; $3x+y-z = 2$; $4x+2y+z = 8$ Solution: $$x+y+2z=6$$ $$3x+y-z=2$$ $$4x + 2y + z = 8$$ $$\Delta = \begin{vmatrix} 1 & 1 & 2 \\ 3 & 1 & -1 \\ 4 & 2 & 1 \end{vmatrix} = 0$$ $$\Delta \mathbf{x} = \begin{vmatrix} 6 & 1 & 2 \\ 2 & 1 & -1 \\ 8 & 2 & 1 \end{vmatrix} = 0$$ $$\Delta y = \begin{vmatrix} 1 & 6 & 2 \\ 3 & 2 & -1 \\ 4 & 8 & 1 \end{vmatrix}$$ $$=0$$ $$\Delta z = \begin{vmatrix} 1 & 1 & 6 \\ 3 & 1 & 2 \\ 4 & 2 & 8 \end{vmatrix}$$ $$= 0$$ Since $\Delta = \Delta x = \Delta y = \Delta z = 0$.the system is consistent and has many solution .also all 2x2 minor of $\Delta \neq 0$. The system is reduced to equation. Let $$z = k$$ $$x+y+2k = 6$$ $x+y = 6-2k$ $$3x+y-k = 2$$ $3x+y = 2+k$ $$\Delta = \begin{vmatrix} 1 & 1 \\ 3 & 1 \end{vmatrix}$$ $$= 1-3 = -2$$ $$\Delta \mathbf{x} = \begin{vmatrix} 6 - 2k & 1 \\ 2 + k & 1 \end{vmatrix}$$ $$= 6-2k-2-k = 4-3k$$ $$\Delta y = \begin{vmatrix} 1 & 6 - 2k \\ 3 & 2 + k \end{vmatrix}$$ $$= 2+k-18+16k = 7k-16$$ Then $$x = \frac{\Delta x}{\Delta} = \frac{4-3k}{-2} = \frac{3k-4}{2}$$ $$=\frac{\Delta y}{\Delta} = \frac{7k-16}{-2} = \frac{16-7k}{2}$$ $$x = \frac{3k-4}{2}$$ and $y = \frac{16-7k}{2}$ and $z = k$ solution set is $(\frac{3k-4}{2}, \frac{16-7k}{2}, k)$ where $k \in \mathbb{R}$. $$x + y + 2z = 4$$; $2x + 2y + 4z = 8$; $3x + 3y + 6z = 12$ solution: $$x + y + 2z = 4$$ $$2x + 2y + 4z = 8$$ $$3x + 3y + 6z = 12$$ عَلِي عَل $$\Delta = \begin{vmatrix} 1 & 1 & 2 \\ 2 & 2 & 4 \\ 3 & 3 & 6 \end{vmatrix}$$ $$= 0$$ $$\Delta x = \begin{vmatrix} 4 & 1 & 2 \\ 8 & 2 & 4 \\ 12 & 3 & 6 \end{vmatrix}$$ $$= 0$$ $$\Delta y = \begin{vmatrix} 1 & 4 & 2 \\ 2 & 8 & 4 \\ 3 & 12 & 6 \end{vmatrix}$$ $$\Delta z = \begin{vmatrix} 1 & 1 & 4 \\ 2 & 2 & 8 \\ 3 & 3 & 12 \end{vmatrix}$$ $$= 2(-12+12)+1(24-24)+1(-12+12)$$ $$= 0$$ $$\Delta = \Delta x = \Delta y = \Delta z = 0$$ $\Delta = \begin{vmatrix} 1 & 1 & 2 \\ 2 & 2 & 4 \\ 3 & 3 & 6 \end{vmatrix}$ = 0 $\Delta x = \begin{vmatrix} 4 & 1 & 2 \\ 8 & 2 & 4 \\ 12 & 3 & 6 \end{vmatrix}$ = 0 $\Delta y = \begin{vmatrix} 1 & 4 & 2 \\ 8 & 2 & 4 \\ 12 & 3 & 6 \end{vmatrix}$ = 0 $\Delta z = \begin{vmatrix} 1 & 1 & 4 \\ 2 & 8 & 4 \\ 3 & 12 & 6 \end{vmatrix}$ = 0 $\Delta z = \begin{vmatrix} 1 & 1 & 4 \\ 2 & 2 & 8 \\ 3 & 3 & 12 \end{vmatrix}$ = 2(-12+12)+1(24-24)+1(-12+12) = 0 $\Delta = \Delta x = \Delta y = \Delta z = 0$ all (2x2) minor are also zeros . but at least one of Aij in Δ is non zero. the system is consistent and has many solution . all the three
equation reduce to one solution . x+y+2z=4put x=s then $s+t+2z=4 \Rightarrow z=\frac{4-s-t}{2}$ let y=t, then $x=(s,t,\frac{4-s-t}{2})$ where $s,k\in R$ put x= s then s+ t +2z = 4 => z = $$\frac{4-s-t}{2}$$ let $$y = t$$, then $x = (s, t, \frac{4-s-t}{2})$ where $s, k \in R$ given that $$x + y + z = 30$$ $x + 2y + 5z = 100$ $x + y = 30 - k$ $x + y = 100 - 5k$ $$\Delta = \begin{vmatrix} 1 & 1 \\ 1 & 2 \end{vmatrix} = 2 - 1 = 1$$. A bag contain 3 types of coins namely Re. 1 ,Re. 2 , Re. 5 .there are 30 coins amounting to Re. 100 in total . find the number of coins in each category . solution: let x ,y ,z be the no. of coins in each Re. 1 ,Re. 2 , Re. 5 . given that $$x + y + z = 30$$ $$x + 2y + 5z = 100$$ $$x + y = 30 - k$$ $$x + y = 100 - 5 k$$ $$\Delta = \begin{vmatrix} 1 & 1 \\ 1 & 2 \end{vmatrix} = 2 - 1 = 1$$ $$\Delta x = \begin{vmatrix} 30 - k & 1 \\ 1000 - 5k & 2 \end{vmatrix}$$ $$= 2(30 - k) \cdot (100 - 5k)$$ $$= 3k - 40$$ $$\Delta y = \begin{vmatrix} 1 & 30 - k \\ 1 & 100 - 5k \end{vmatrix}$$ $$= (100 - 5k) - (30 - k)$$ $$= 70 - 4k$$ $$x = \frac{\Delta x}{\Delta} = \frac{3k - 40}{1} = 3k - 40$$ $$y = \frac{\Delta y}{\Delta} = \frac{70 - 4k}{1} = 70 - 4k$$ \$\display \display \d $$z = k$$ the solution set is(x, yz) = (3k - 40,70,4k) where s, k $\in R$. Since the number of coins is a non – negative integer, k = 0, 1, 3, ... Moreover $$3k - 40 \ge 0$$, $70-4k \ge 0$, $= > 14 \le x \le 17$ The possible solution are (2,14,14)(5,10,15)(8,6,16)(11,2,17). ## EXERCISE: 1.5 examine the consistency of the following of the equations . if it is consistent then solve the sums .(using by rank method) $$4x + 3y + 6z = 25$$; $x + 5y + 7z = 13$; $2x + 9y + z = 1$ solution : $$4x + 3y + 6z = 25$$ $$x + 5y + 7z = 13$$ $$2x + 9y + z = 1$$ $$A = \begin{bmatrix} 4 & 3 & 6 \\ 1 & 5 & 7 \\ 2 & 9 & 1 \end{bmatrix}$$ $$(A,B) = \begin{bmatrix} 4 & 3 & 625 \\ 1 & 5 & 713 \\ 2 & 9 & 11 \end{bmatrix} \sim$$ $$(A,B) = \begin{bmatrix} 1 & 5 & 713 \\ 4 & 3 & 625 \\ 2 & 9 & 11 \end{bmatrix} \quad R_1 \leftrightarrow R_2$$ $R_{2} + R_{2} - 4R_{1}$; $R_{3} + R_{3} - 2R_{1}$ $$\sim \begin{bmatrix} 1 & 5 & 7 & 13 \\ 0 & -17 & -22 - 27 \\ 0 & -1 & -13 - 25 \end{bmatrix}$$ $R_2 \rightarrow (-R_2)$; $R_3 \rightarrow (-R_3)$ $$\sim \begin{bmatrix} 1 & 5 & 7 & 13 \\ 0 & 17 & 2227 \\ 0 & 1 & 1325 \end{bmatrix}$$ $R_2 \leftrightarrow R_3$ $$\sim \begin{bmatrix} 1 & 5 & 7 & 13 \\ 0 & 1 & 1325 \\ 0 & 17 & 2227 \end{bmatrix}$$ $$R_3 \rightarrow R_3 - 17R_1$$ $$\sim \begin{bmatrix} 1 & 5 & 7 & 13 \\ 0 & 1 & 13 & 25 \\ 0 & 0 & -199 - 398 \end{bmatrix}$$ = $> \rho(A,B)$ = 3 and also $\rho(A)$ = 3 = no . of unknowns hence the system is consistent and has unique solution. $$-199 z = -398$$ $$y + 13z = 25$$ $$x + 5y + 7z = 13$$ $$z = 2$$ $$y + 26 = 25$$ $$x - 5 + 14 = 13$$ $$y = -1$$ solution is x = 4, y = -1, z = 2 (ii) $$x-3y-8z = -10$$; $3x + y - 4z = 0$; $2x + 5y + 6z - 13 = 0$ solution: $$x - 3y - 8z = -10$$ $$3x + y - 4z = 0$$ $$2x + 5y + 6z - 13 = 0$$ $$A = \begin{bmatrix} 1 & -3 & -8 \\ 3 & 1 & -4 \\ 2 & 5 & 6 \end{bmatrix}$$ (A,B) = $$\begin{bmatrix} 1 & -3 & -8-10 \\ 3 & 1 & -4 & 0 \\ 2 & 5 & 6 & 13 \end{bmatrix}$$ $$R_2 \rightarrow R_2 - 3R_1$$; $R_3 \rightarrow R_3 - 2R_1$ $$\sim \begin{bmatrix} 1 & -3 & -8 - 10 \\ 0 & 10 & 20 & 30 \\ 0 & 11 & 22 & 33 \end{bmatrix}$$ $$R_{2} + (R_{2} \div 10)$$; $R_{3} + (-R_{3} \div 11)$ $$\sim \begin{bmatrix} 1 & -3 & -8 - 10 \\ 0 & 1 & 2 & 3 \\ 0 & 1 & 2 & 3 \end{bmatrix}$$ $$R_3 \rightarrow R_3 - R_2$$ $$\sim \begin{bmatrix} 1 & -3 & -8 - 10 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$ = > $\rho(A,B)$ = 2 and also $\rho(A) \neq \text{no. of unknowns}$. hence the system is consistent and has unique solution. let $$z = k$$ \$\tag{6} \tag{6} \tag{ $$x - 3y = -10 + 8k$$ $$=> 3x - 9y = -30 + 24k$$ $$3x - 9y = -30 + 24k$$ $$3x + y = 4k$$ $$(-) (-) (-)$$ $$-10 y = -30 + 20k$$ $$y = -2k + 3$$ $$x = -10 + 8k + 3 (-2k + 3)$$ $$x = 2k - 1$$ The solution set is (2k-1, -2k+3, k), where $k \in R$. (iii). $$x + y + z = 7$$; $x + 2y + 3z = 18$; $y + 2z = 6$. solution : $$x + y + z = 7$$ $x + 2y + 3z = 18$ $y + 2z = 6$ $$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 0 & 1 & 2 \end{bmatrix}$$ $$(A,B) = \begin{bmatrix} 1 & 1 & 1 & 7 \\ 1 & 2 & 318 \\ 0 & 1 & 2 & 6 \end{bmatrix}$$ $R_2 \rightarrow R_2 - R_1$ $$\sim \begin{bmatrix} 1 & 1 & 1 & 7 \\ 0 & 1 & 211 \\ 0 & 0 & 2 & 6 \end{bmatrix} R_{3} \rightarrow R_{3} - R_{2}$$ $$\sim \begin{bmatrix} 1 & 1 & 1 & 7 \\ 0 & 1 & 2 & 11 \\ 0 & 0 & 0 - 5 \end{bmatrix}$$ => $$\rho(A,B)$$ = 3 and also $\rho(A)$ = 2 . hence the system is inconsistent and has no solution. (iv) $$.x - 4y + 7z = 14$$; $3x + 8y - 2z = 13$; $7x - 8y + 26z = 5$ solution: $$x - 4y + 7z = 14$$ $$3x + 8y - 2z = 13$$ $$7x - 8y + 26z = 5$$ $$A = \begin{bmatrix} 1 & -4 & 7 \\ 3 & 8 & -2 \\ 7 & -8 & 26 \end{bmatrix}$$ $$(A,B) = \begin{bmatrix} 1 & -4 & 7 & 14 \\ 3 & 8 & -213 \\ 7 & -8 & 26 & 5 \end{bmatrix}$$ $$R_2 \rightarrow R_2 - 3R_1 \quad R_3 \rightarrow R_3 - 7R_1$$ $$\sim \begin{bmatrix} 1 & -4 & 7 & 14 \\ 0 & 20 & -2 & 3 & -29 \\ 0 & 20 & -23 & -93 \end{bmatrix} R_3 - R_2$$ $$\sim \begin{bmatrix} 1 & -4 & 7 & 14 \\ 0 & 20 & -23 - 29 \\ 0 & 0 & 0 & -64 \end{bmatrix} R_3 \longrightarrow R_3 - R_1$$ = $$> \rho(A,B)$$ = 3 and also $\rho(A) = 2$. \$\frac{1}{2} \frac{1}{2} \frac hence the system is inconsistent and has no solution. $$(V)X + Y - Z = 1$$; $2X + 2Y - 2Z = 2$; $-3X - 3Y + 3Z = -3$ solution: $$X + Y - Z = 1$$ $$2X + 2Y - 2Z = 2 \Rightarrow \text{dividing by } 2$$ $$-3X - 3Y + 3Z = -3$$ => dividing by -3 all three equation are one and the same. there is only one equation in three unknowns. hence the system is consistent but has many solution. let $$z = k_2$$; $y = k_1$ then $$x + y - z = 1$$ $$x = 1 - k_1 + k_2$$ $$x = (1 - k_1 + k_2, k_1, k_2) k_1, k_2 \in R.$$ 2. discuss the solution of the system of equation for all values of λ $$x + y + z = 2$$; $2x + y - 2z = 2$; $\lambda x + y + 4z = 2$ solution: $$x + y + z = 2$$ $$2x + y - 2z = 2$$ $$\lambda x + y + 4z = 2$$ $$A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & -2 \\ \lambda & 1 & 4 \end{bmatrix}$$ $$|A| = \begin{vmatrix} 1 & 1 & 1 \\ 2 & 1 & -2 \\ \lambda & 1 & 4 \end{vmatrix}$$ $$= 1(4+2)\cdot 1(8+2\lambda) + 1(2-\lambda)$$ $$= 6\cdot 8\cdot 2\lambda + 2\cdot \lambda = -3\lambda$$ where $\lambda \neq 0 | A \neq 0 = >$ the system has unique solution. let $\lambda = 0$. then $A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & -2 \\ 0 & 1 & 4 \end{bmatrix}$ $$(A,B) \sim \begin{bmatrix} 1 & 1 & 1 & 2 \\ 2 & 1 & -2 & 2 \\ \lambda & 1 & 4 & 2 \end{bmatrix}$$ $$(A,B) \sim \begin{bmatrix} 1 & 1 & 1 & 2 \\ 2 & -1 & -4 & -2 \\ 0 & 1 & 4 & 2 \end{bmatrix}$$ $$R_2 \rightarrow R_2 X(-1) \; ; \; R_3 \rightarrow R_2 + R_3$$ $$(A,B) \sim \begin{bmatrix} 1 & 1 & 1 & 2 \\ 2 & 1 & 4 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$ $$= > \rho(A,B) = 2 \text{ and also } \rho(A) = 2 \neq \text{ no .of unknowns.}$$ hence the system is consistent and has many solution. $$|\text{let } z = k|$$ $$x + y = 2 - k$$ $$2x + y = 2 + 2k$$ $$-x = -3 k$$ let $$z = k$$ $x + y = 2 - k$ $2x + y = 2+2k$ $$x = 3k$$ hence $$y = 2-4k$$ Therefore solution is (3k, 2-4k,k), $k \in R$. 3.for what value of k, the system of equations. kx + y + z = 1; x + ky + z = 1; x + y + kz = 1 have (i) unique solution, (ii) more then one solution and (iii) no solution. solution: $$kx + y + z = 1$$ $$x + ky + z = 1$$ $$x + y + kz = 1$$ $$A = \begin{bmatrix} K & 1 & 1 \\ 1 & K & 1 \\ 1 & 1 & K \end{bmatrix} \quad ; \quad (A,B) = \begin{bmatrix} K & 1 & 1 & 1 \\ 1 & K & 1 & 1 \\ 1 & 1 & K & 1 \end{bmatrix}$$ $$|A| = K (K^{2}-1)-1(K-1)+1(1-K)$$ $$= K (K^{2}-1)-1(K-1)-1(K-1)$$ $$= (K-1)(K(K+1)-1-1)$$ $$= (K-1)(K^{2}+K-2)$$ $$= (K-1)(K+2)(K-1) = (K-1)^{2} (K+2)$$ suppose $k \neq 1$ and $k \neq -2$ then $A \neq 0$ = > the system is consistent and has unique solution . $=>(K-1)^2$ (K+2) = 0 then k = 1,-2 (ii) let k = 1. then the system reduces to a single equation \$\frac{3}{2} \frac{3}{2} \frac $$x + y + z = 1$$ (iii) let $$k = -2$$ $$(A,B) = \begin{bmatrix} -2 & 1 & 1 & 1 \\ 1 & -2 & 1 & 1 \\ 1 & 1 & -2 & 1 \end{bmatrix}$$ $$x+y+z=1$$ the system will have many solution . (iii) let $k=-2$ $$(A,B)=\begin{bmatrix} -2&1&1&1\\1&-2&1&1\\1&1&-2&1\end{bmatrix}$$ $$(A,B)\sim\begin{bmatrix} 1&-2&1&1\\-2&1&1&1\\1&1&-2&1\end{bmatrix}$$ $$R_1\leftrightarrow R_2$$ $$R_2\to R_2+2R_1\;;\;R_3\to R_3-R_1$$ $$\sim\begin{bmatrix} 1&-2&1&1\\0&-3&3&3\\0&3&-3&0\end{bmatrix}$$ $$R_2\to \frac{R_2}{3}\;;\;R_3\to R_3+R_2$$ $$\sim\begin{bmatrix} 1&-2&1&1\\0&-1&1&1\\0&0&0&3\end{bmatrix}$$ $$=>\rho(A,B)=3 \text{ and also } \rho(A)=2$$ hence the system is inconsistent and has no solution. $$R_2 \rightarrow R_2 + 2R_1$$; $R_3 \rightarrow R_3 - R_1$ $$\sim \begin{bmatrix} 1 & -2 & 1 & 1 \\ 0 & -3 & 3 & 3 \\ 0 & 3 & -3 & 0 \end{bmatrix}$$ $$R_2 \rightarrow \frac{R2}{3}$$; $R_3 \rightarrow R_3 + R_2$ $$\sim \begin{bmatrix} 1 & -2 & 1 & 1 \\ 0 & -1 & 1 & 1 \\ 0 & 0 & 0 & 3 \end{bmatrix}$$ = $$> \rho(A,B)$$ = 3 and also $\rho(A) = 2$ # vector algebra 1. Find $$\vec{a}$$. \vec{b} when $\vec{a} = 2\vec{l} + 2\vec{j} - \vec{k}$ and $\vec{b} = 6\vec{i} - 3\vec{j} + 2\vec{k}$ Solution: $$\vec{a} = 2\vec{i} + 2\vec{j} - \vec{k}$$ and $\vec{b} = 6\vec{i} - 3\vec{j} + 2\vec{k}$ $$\vec{a} \cdot \vec{b} = (2)(6) + (2)(-3) + (-1)(2)$$ 2. If $$\overrightarrow{a} = \overrightarrow{l} + \overrightarrow{j} + 2\overrightarrow{k}$$ and $\overrightarrow{b} = 3\overrightarrow{i} + 2\overrightarrow{j} - \overrightarrow{k}$ find $(\overrightarrow{a} + 3\overrightarrow{b})$. $(2\overrightarrow{a} - \overrightarrow{b})$ Solution 3. find λ so that the vectors $2i + \lambda j + \overline{k}$ and $i - 2j + \overline{k}$ are perpendicular to each other. Solution: Let $$\overrightarrow{a} = \overrightarrow{2i} + \overrightarrow{\lambda} \overrightarrow{j} + \overrightarrow{k}$$ $$\overrightarrow{b} = \overrightarrow{i} - \overrightarrow{2j} + \overrightarrow{k}$$ Since a and b are perpendicular \overrightarrow{a} . \overrightarrow{b} = 0 (2) (1) + (
$$\lambda$$) (-2) + (1) (1) = 0 $$2-2 \lambda + 1 = 0 = \lambda = \frac{3}{2}$$ 4. Find the value of m for which the vectors $\overrightarrow{a} = 3\overrightarrow{i} + 2\overrightarrow{j} + 9\overrightarrow{k}$ and $\overrightarrow{b} = \overrightarrow{i} + m\overrightarrow{j} + 3\overrightarrow{k}$ are (i) perpendicular, 9ii) parallel. Solution: $$\overrightarrow{a} = \overrightarrow{3i} + \overrightarrow{2j} + \overrightarrow{9k}$$ $\overrightarrow{b} = \overrightarrow{i} + \overrightarrow{mj} + 3\overrightarrow{k}$ (i) If they are perpendicular \overrightarrow{a} . $\overrightarrow{b} = 0$ Hence $$(3)(1) + (2)(m) + (9)(3) = 0$$ $$3 + 2m + 27 = 0$$ $$= m = -15$$ (ii) If they are parallel, $$\frac{3}{1} = \frac{2}{m} = \frac{9}{3}$$ $$\Rightarrow$$ = 9m = 6 => m = $\frac{2}{3}$ 5. Find the angles which the vector $\mathbf{i} - \mathbf{j} + \sqrt{2}$ k makes with the coordinate axes. Solution: Let $F = i - j + \sqrt{2} + \sqrt{2}$ $$|F| = \sqrt{(1)^2(-1)^2 + (\sqrt{1})^2} = 2$$ Hence direction cosines *I*, *m*, *n* of F are $$I = \frac{a}{|F|} = \frac{1}{2}$$, $m = \frac{b}{|F|} = \frac{1}{2}$, $n = \frac{c}{|F|} = \frac{\sqrt{2}}{2} = \frac{1}{\sqrt{2}}$ Let α , β and γ are the angles at which r makes with x-axis, y-axis and z-axis, then $$\cos \alpha = I = \frac{1}{2} = \alpha = \frac{\pi}{3}$$ $$\cos \beta = m = \frac{1}{2} \implies \beta = \pi - \frac{\pi}{3} = \frac{2\pi}{3}$$ $$\cos \gamma = n = \frac{1}{\sqrt{2}} \implies \gamma = \frac{\pi}{4}$$ 6. Show that the vector $\mathbf{i} + \mathbf{j} + \mathbf{k}$ is equally inclined with the coordinate axes. Solution: $$\overrightarrow{F} = \overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k}$$ $$|F| = \sqrt{(1)^2 + (1)^2 + (1)^2} = \sqrt{3}$$ Hence the direction cosines *I*, *m*, *n* of F are $$I = \frac{a}{|F|} = \frac{1}{\sqrt{3}}, m = \frac{b}{|F|} = \frac{1}{\sqrt{3}}, n = \frac{c}{|F|} = \frac{1}{\sqrt{3}}$$ Let α , β and γ be the angles at which \bar{r} is inclined to x-axis and z-axis. Then, $$\cos \alpha = \frac{1}{\sqrt{3}}$$, $\cos \beta = \frac{1}{\sqrt{3}}$, $\cos \gamma = \frac{1}{\sqrt{3}}$ $$\alpha = \beta = \gamma = \cos^{-1} \frac{1}{\sqrt{3}}$$ 7. If \hat{a} and \hat{b} are unit vectors inclined at an angle θ , then prove that \$\frac{1}{2} \frac{1}{2} \frac (i) $$\cos \frac{\theta}{2} = \frac{1}{2} |\hat{a}| + \hat{b}|$$ and (ii) $\tan \frac{\theta}{2} = \frac{|\hat{a} - \hat{b}|}{|\hat{a} + \hat{b}|}$ Solution: (i) $$|\hat{a} + \hat{b}|^2 = |a|^2 + |b|^2 + 2|a, b|$$ $= 1 + 1 + 2|a||b|\cos\theta$ $= 2 + 2(1)(1)\cos\theta = 2 + 2\cos\theta$ $= 2(1 + \cos\theta) = 2\left(2\cos^2\frac{\theta}{2}\right)$ $|\hat{a} + \hat{b}|^2 = 4\cos^2\frac{\theta}{2}$ $$\frac{1}{4} \mid \hat{a} \mid \hat{b} \mid^2 = \cos^2 \frac{\theta}{2}$$ $$\frac{1}{2} \mid \hat{a} + \hat{b} \mid = \cos \frac{\theta}{2}$$ (ii) From the above result, we get $|\hat{a}| + \hat{b}| = 2 \cos \frac{\theta}{2}$, $$|\hat{a} - \hat{b}| = 2 \sin \frac{\theta}{2}$$ then $\tan \frac{\theta}{2} = \frac{|\hat{a} - \hat{b}|}{|\hat{a} + \hat{b}|}$. 8. If the sum of two unit vectors is a unit vector prove that the magnitude of their difference is $\sqrt{3}$. Solution: Let $\hat{a} + \hat{b} = \hat{c}$ given $|\hat{c}| = 1$, also a, b are unit vectors. To prove that: $$|a-b| = \sqrt{3}$$ $(a + b) \cdot (a + b) = \overrightarrow{a \cdot a} + \overrightarrow{2a \cdot b} + \overrightarrow{b \cdot b}$ عَلِي عَلَمْ عَلَم $$|c|^{2} = |a|^{2} + 2a. b + |b|^{2}$$ $$= 1 = |a|^{2} + 2 (a. b) + |b|^{2}$$ $$= |a|^{2} + |b|^{2} = 1 - 2 (a. b)$$ $$\Rightarrow 2 = 1 - 2 (a. b)$$ $$1 = -2 (a. b)$$ Now, $$(a - b) = a. a - 2 (a. b) + b. b$$ $$|\overrightarrow{a} - \overrightarrow{b}|^2 = |a|^2 + |b|^2 - 2$$ (a. b) $$\Rightarrow |\overrightarrow{a} - \overrightarrow{b}| = \sqrt{3}$$. 9. If a, b, c are three mutually perpendicular unit vectors, then prove that $$|a+b+c| = \sqrt{3}$$. Solution: Given a, b, c are three mutually perpendicular unit vectors. $$\Rightarrow |\overrightarrow{a}| = |\overrightarrow{b}| = |\overrightarrow{c}| = 1$$ and $$\overrightarrow{a} \cdot \overrightarrow{b} = \overrightarrow{b} \cdot \overrightarrow{c} = \overrightarrow{c} \cdot \overrightarrow{a} = 0$$ Now, $(\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}) \cdot (\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}) = \overrightarrow{a} \cdot \overrightarrow{a} + \overrightarrow{b} \cdot \overrightarrow{b} + \overrightarrow{c} \cdot \overrightarrow{c} = 2$ $(\overrightarrow{a} \cdot \overrightarrow{b} + \overrightarrow{b} \cdot \overrightarrow{c} + \overrightarrow{c} \cdot \overrightarrow{a})$ $$= \overrightarrow{a}^2 + \overrightarrow{b}^2 + |\overrightarrow{c}|^2 \text{ since } \overrightarrow{a}. \overrightarrow{b} = \overrightarrow{b}. \overrightarrow{c} = \overrightarrow{c}. \overrightarrow{a} = 0$$ $$|\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}|^2 = 1 + 1 + 1 = 3$$ $$\Rightarrow$$ $|\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}| = \sqrt{3}$. 10. If $$|\vec{a} + \vec{b}| = 60$$, $|\vec{a} - \vec{b}| = 40$ and $|\vec{b}| = 46$ find $|\vec{a}|$. Solution: $$|\overrightarrow{a} + \overrightarrow{b}| = 60$$, $|\overrightarrow{a} - \overrightarrow{b}| = 40$, $|\overrightarrow{b}| = 46$ $$3600 + 1600 = 2|a|^2 + 4232$$ 11. Let u, v and w be vector such that u + v + w = 0. If $$|\overrightarrow{u}| = 3$$, $|\overrightarrow{v}| = 4$ and $|\overrightarrow{w}| = 5$ then find \overrightarrow{u} . $\overrightarrow{v} + \overrightarrow{v}$. $\overrightarrow{w} + \overrightarrow{w}$. \overrightarrow{u} Solution: $$(\overrightarrow{u} + \overrightarrow{v} + \overrightarrow{w}) \cdot (\overrightarrow{u} + \overrightarrow{v} + \overrightarrow{w}) = |\overrightarrow{u}|^2 + |\overrightarrow{v}|^2 + |\overrightarrow{w}|^2 + 2(\overrightarrow{u} \cdot \overrightarrow{v} + \overrightarrow{u} \cdot \overrightarrow{w} + \overrightarrow{w} \cdot \overrightarrow{u})$$ $$\Rightarrow 0 = 9 + 16 + 25 + 2(\overrightarrow{u} \cdot \overrightarrow{v} + \overrightarrow{u} \cdot \overrightarrow{w} + \overrightarrow{w} \cdot \overrightarrow{u})$$ $$\Rightarrow 2(\overrightarrow{u} \cdot \overrightarrow{v} + \overrightarrow{u} \cdot \overrightarrow{w} + \overrightarrow{w} \cdot \overrightarrow{u}) = -50$$ $$\overrightarrow{U} \cdot \overrightarrow{v} + \overrightarrow{u} \cdot \overrightarrow{w} + \overrightarrow{w} \cdot \overrightarrow{u} = -25.$$ 12. Show that the vectors 3i - 2j + k, i - 3j + 5k and 2i + j - 4k form a right angled triangle. Solution: Let $$\overrightarrow{a} = 3\overrightarrow{i} - 2\overrightarrow{j} + \overrightarrow{k}$$ $\overrightarrow{b} = \overrightarrow{i} - 3\overrightarrow{j} + 5\overrightarrow{k}$ and $\overrightarrow{c} = 2\overrightarrow{i} + \overrightarrow{j} - 4\overrightarrow{k}$ $\overrightarrow{a} \cdot \overrightarrow{b} = (3)(1) + (-2)(-3) + (1)(5) = 3 + 6 + 5 = 14$ b. c = (1)(2) + (-3)(1) + (5)(-4) = 2 - 3 - 20 = -21 c. a = (3)(2) + (-2)(1) + (1)(-4) = 6 - 2 - 4 = 0 ⇒ c and a are perpendicular to each other. Also, $$\overrightarrow{b} + \overrightarrow{c} = (\overrightarrow{i} - 3\overrightarrow{j} + 5\overrightarrow{k}) + (2\overrightarrow{i} + \overrightarrow{j} - 4\overrightarrow{k})$$ = $3\overrightarrow{i} - 2\overrightarrow{j} + \overrightarrow{k} = \overrightarrow{a}$ Hence the vectors form a right angled triangle. Another method: $$|\overrightarrow{a}| = \sqrt{(3)^2 + (-2)^2 + (1)^2} = \sqrt{9 + 4 + 1} = \sqrt{14}$$ $$|\overrightarrow{b}| = \sqrt{(1)^2 + (-3)^2 + (5)^2} = \sqrt{1 + 9 + 25} = \sqrt{35}$$ $$|\overrightarrow{c}| = \sqrt{(2)^2 + (1)^2 + (-4)^2} = \sqrt{4 + 1 + 16} = \sqrt{21}$$ Since $$|\overrightarrow{b}|^2 = |\overrightarrow{a}|^2 + |\overrightarrow{c}|^2$$ The vectors form a right angled triangle. 13Show that the points whose position vectors 4i - 3j + k, 2i - 4j + 5k, $\rightarrow \rightarrow$ i - j Form a right angled triangle. Solution: Let $$\overrightarrow{OA} = \overrightarrow{4i} - \overrightarrow{3j} + \overrightarrow{k}$$ $$\overrightarrow{OB} = 2\overrightarrow{i} - \overrightarrow{4j} + 5\overrightarrow{k} \quad \overrightarrow{OC} = \overrightarrow{i} - \overrightarrow{j}$$ $$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$$ $$= 2\overrightarrow{i} - \overrightarrow{4j} + 5\overrightarrow{k} - (\overrightarrow{4i} - 3\overrightarrow{j} + \overrightarrow{k}) = 2\overrightarrow{i} - \overrightarrow{j} + 4\overrightarrow{k}$$ $$\overrightarrow{BC} = \overrightarrow{OC} - \overrightarrow{OB}$$ $$= (\overrightarrow{i} - \overrightarrow{j}) - (2\overrightarrow{i} - 4\overrightarrow{j} + 5\overrightarrow{k}) - \overrightarrow{i} + 3\overrightarrow{j} - 5\overrightarrow{k}$$ $$\overrightarrow{CA} = \overrightarrow{OA} - \overrightarrow{OC}$$ $$= (\overrightarrow{4i} - 3\overrightarrow{j} + \overrightarrow{k}) - (\overrightarrow{i} - \overrightarrow{j}) = 3\overrightarrow{i} - 2\overrightarrow{j} + \overrightarrow{k}$$ $$|\overrightarrow{AB}| = \sqrt{(-2)^2 + (-1)^2 + (4)^2} = \sqrt{4 + 1 + 16} = \sqrt{21}$$ $$|\overrightarrow{BC}| = \sqrt{(-1)^2 + (3)^2 + (-5)^2} = \sqrt{1 + 9 + 25} = \sqrt{35}$$ $$|\overrightarrow{CA}| = \sqrt{(3)^2 + (-2)^2 + (1)^2} = \sqrt{9 + 4 + 1} = \sqrt{41}$$ $$|\overrightarrow{BC}|^2 = |\overrightarrow{AB}|^2 + |\overrightarrow{CA}|^2$$ $$\Rightarrow 35 = 21 + 14 \Rightarrow 35 = 35$$ \Rightarrow The triangle is right angled. $\overline{AB} + \overline{BC} = \overline{AC}$. 14. Find the projection of (i) $$\overrightarrow{i} - \overrightarrow{j}$$ on z-axis, (ii) $\overrightarrow{i} + 2\overrightarrow{j} - 2\overrightarrow{k}$ on $2\overrightarrow{i} - \overrightarrow{j} + 5\overrightarrow{k}$, (iii) $3\overrightarrow{i} + \overrightarrow{j} - \overrightarrow{k}$ on $4\overrightarrow{i} - \overrightarrow{j} + 2\overrightarrow{k}$. Solution: (i) Projection of i – j on z-axis = $\frac{i-j}{|\vec{k}|} = 0$ (ii) Projection of $$i + 2j - 2k$$ on $2i - j + 5k$ is $$\frac{(i+2j-2k)(2i-j+5k)}{|2i-j+5k|}$$
$$=\frac{2-2-10}{\sqrt{4+1+25}}\ =\frac{-10}{\sqrt{30}}$$ (iii) Projection of $$3i + j - k$$ on $4i - j + 2k$ is $$\frac{(3\vec{i} + \vec{j} - \vec{k}).(4\vec{i} - \vec{j} + 2\vec{k})}{|4\vec{i} - \vec{j}| + 2\vec{k}|}$$ $$=\frac{12-1-2}{\sqrt{16+1+4}} = \frac{9}{\sqrt{21}}$$ #### **EXERCISE 2.2** Prove by vector method. 1. If the diagonals of a parallelogram are equal then it is a rectangle. Solution: Let ABCD be a parallelogram. Let AC and BD be the diagonals Then AC = $$\overrightarrow{BD}$$ (given) $$=>|\overrightarrow{AC}|^{2} = |\overrightarrow{BD}|^{2}$$ $$=> \overrightarrow{AC} \cdot \overrightarrow{AC} = \overrightarrow{BD} \cdot \overrightarrow{BD}$$ $$(\overrightarrow{AB} + \overrightarrow{BC}) \cdot (\overrightarrow{AB} + \overrightarrow{BC}) = (\overrightarrow{BC} + \overrightarrow{CD}) \cdot (\overrightarrow{BC} + \overrightarrow{CD})$$ $$= (\overrightarrow{BC} - \overrightarrow{AB}) \cdot (\overrightarrow{BC} - \overrightarrow{AB})$$ $$=> |\overrightarrow{AB}|^{2} + |\overrightarrow{BC}|^{2} + 2\overrightarrow{AB} \cdot \overrightarrow{BC} = |\overrightarrow{BC}|^{2} + |\overrightarrow{AB}|^{2} - 2\overrightarrow{BC} \cdot \overrightarrow{AB}$$ $$=> 4 \overrightarrow{AB} \cdot \overrightarrow{BC} = 0$$ Hence AB is perpendicular to BC => ABCD us a rectangle. 2. The mid point of the hypotenuse of a right angled triangle is equidistant from its vertices. Solution: Given ABC is a right angled triangle in which AC is the hypotenuse and D is the mid point of AC. $$\Rightarrow AD = DC$$ Since B = 90 $$\overrightarrow{AB}, \overrightarrow{BC} = 0$$ $$But \overrightarrow{AB} = \overrightarrow{AD} + \overrightarrow{DB}$$ And $\overrightarrow{BC} = \overrightarrow{BD} + \overrightarrow{DC} = -\overrightarrow{DB} + \overrightarrow{AD}$ Hence from (i). $$(\overrightarrow{AD} + \overrightarrow{DB})$$. $(-\overrightarrow{DB} + \overrightarrow{AD}) = 0$ $$=> |\overrightarrow{AD}|^2 - |\overrightarrow{DB}|^2 = 0$$ $$=> |\overrightarrow{AD}| = |\overrightarrow{DB}|$$ Hence $$|\overrightarrow{AD}| = |DC| = |DB|$$ D is equidistant from the vertices. 3. The sum of the squares of the diagonals of a parallelogram is equal to the sum of the squares of the sides. Solution: $$\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC}$$ $$\overrightarrow{BD} = \overrightarrow{BA} + \overrightarrow{AD}$$ $$= \overrightarrow{AD} + \overrightarrow{BA} = \overrightarrow{AD} - \overrightarrow{AB}$$ $$\overrightarrow{AC}^2 = (\overrightarrow{AB} + \overrightarrow{BC})^2 D$$ $$= \overrightarrow{AB}^2 + \overrightarrow{BC}^2 + 2 \overrightarrow{AB} \cdot \overrightarrow{BC}$$ $$=\overrightarrow{AB}^2 + \overrightarrow{BC}^2 + 2\overrightarrow{AB} + \overrightarrow{AD}$$ $$\overrightarrow{BD}^2 = (\overrightarrow{AD} - \overrightarrow{AB})^2$$ $$= \overrightarrow{AD}^2 + \overrightarrow{AB}^2 - 2\overrightarrow{AB} \cdot \overrightarrow{AD}$$ $$\overrightarrow{AC}^2 + \overrightarrow{BD}^2 = \overrightarrow{AB}^2 + \overrightarrow{BC}^2 + \overrightarrow{AD}^2 + \overrightarrow{AB}^2$$ $$= \overrightarrow{AB}^2 + \overrightarrow{BC}^2 + \overrightarrow{DC}^2 + \overrightarrow{AD}^2$$ 4. cos(A+B) = cos A cos B B - sin A sin B. Take $$OM = OL = 1$$ unit Draw MN $$\perp$$ to OX $$OM = ON + NM$$ $$\overrightarrow{OM} = \overrightarrow{COS} \overrightarrow{A} \overrightarrow{i} + \overrightarrow{sin} \overrightarrow{A} \overrightarrow{j}$$ $$\overrightarrow{OL} = \cos \overrightarrow{Bi} - \sin \overrightarrow{Bj}$$ $$\overrightarrow{OM}$$. $\overrightarrow{OL} = (\cos A i + \sin A j)$. $(\cos B i - \sin B j)$ $$|OM|$$ $|OL|$ $\cos (A + B) = \cos A \cos B - \sin A \sin B$ $$=$$ >Cos (A + B) $=$ cos A cos B $-$ sin A sin B 5. Find the work done by the force F = 2i + j + k acting on a particle, if the particle is displaced from the point with position vector 2i + 2j + 2k to the point with Position vector 3i + 4j + 5k. Solution: Displacement d = AB = OB - OA $$(\overrightarrow{OA} = 2\overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k}; \overrightarrow{OB} = 3\overrightarrow{i} + 4\overrightarrow{j} + 5\overrightarrow{k})$$ $$= (3\overrightarrow{i} + 4\overrightarrow{j} + 5\overrightarrow{k}) - (2\overrightarrow{i} + 2\overrightarrow{j} + 2\overrightarrow{k})$$ $$= (\overrightarrow{i} + 2\overrightarrow{j} + 3\overrightarrow{k})$$ Work done $$= (2i + j + k). (i + 2j + 3k)$$ $$= 2 + 2 + 3 = 7$$ units. = F. d 6. A force of magnitude 5 units acting parallel of $2\vec{i} - 2\vec{j} + \vec{k}$ displaces the point of application from (1,2,3) to 5,3,7). Find the work done. Solution: Displacement = AB = OB - OA $$= (OA = i + 2j + 3k; OB = 5i + 3j + 7k)$$ $$= 4i + j + 4k$$ Force of magnitude 5 units acting parallel to 2i - 2j + k $$= 5 \frac{2i-2j+k}{\sqrt{4+4+1}} = \frac{5}{3} (2i-2j+k)$$ $$= \frac{10}{3} (4) - \frac{10}{3} (1) + \frac{5}{3} (4)$$ $$= \frac{40}{3} - \frac{10}{3} + \frac{20}{3} = \frac{50}{3}$$ 7. The constant forces 2i - 5j + 6k, -i + 2j - k and 2i + 7j act on a particle which is displaced from position 4i - 3j - 2k to position 6i + j - 3k. Find the work done. Solution: Displacement = Final position — Initial position $$= (6i + j - 3k) - (4i - 3j - 2k)$$ $$= 2i + 4j - k$$ Total forces = $$(2i - 5j + 6k) + (-i + 2j - k) + (2i + 7j)$$ $$= (3i + 4j + 5k)$$ Work done = F. d = $$(3i + 4j + 5k)$$. $(2i + 4j - k)$ = $6 + 16 - 5 = 17$ 8. Forces of magnitudes 3 and 4 units acting in directions 6i + 2j + 3k and 3i - 2j + 6k respectively act on a particle which is displaced from the point (2, 2, -1) to (4, 3, 10). Find the work done by the forces. Solution: Displacement = Final position - Initial positions $$= (4i + 3j + k) - (2i + 2j - k)$$ $$= 2i + j + 2k$$ $$= 3\left(\frac{6i + 2j + 3k}{\sqrt{36 + 4 + 9}}\right) \text{ and } 4\left(\frac{3i + 2j + 6k}{\sqrt{9 + 4 + 36}}\right)$$ $$= \frac{3}{7} (6i + 2j + 3k) \text{ and } \frac{4}{7} (3i - 2j + 6k)$$ Sum of the forces = $$\frac{3}{7} (6i + 2j + 3k) + \frac{4}{7} (3i - 2j + 6k)$$ = $\frac{1}{7} (18i + 6j + 9k) + \frac{1}{7} (12i - 8j + 24k)$ = $\frac{1}{7} (30i - 2j + 33k)$.. work done = $$\overrightarrow{F}$$. d = $\frac{1}{7}$ (30 i - 2j + 33k). (2 i + j + 2k) = $\frac{1}{7}$ [30 (2) - 2 (1) + 33 (2)] = $\frac{1}{7}$ [60 - 2 + 66] = $\frac{124}{7}$ = $\frac{124}{7}$ units. ### **SOLUTIONS OF EXERCISE – 2.3** 1. Find the magnitude of a x b if a = 2i + k, b = i + j + k Solution: Let a = 2i + k; b = i + j + k $$\overrightarrow{a} \times \overrightarrow{b} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 2 & 0 & 1 \\ 1 & 1 & 1 \end{vmatrix}$$ $$= \overrightarrow{i} (0-1) - \overrightarrow{j} (2-1) + \overrightarrow{k} (2-0)$$ $$= -\overrightarrow{i} - \overrightarrow{j} + 2\overrightarrow{k}$$: | a x b | = $$\sqrt{(-1)^2 + (-1)^2 + (2)^2}$$ = $\sqrt{1 + 1 + 4}$ = $\sqrt{6}$ 2. If $|\overrightarrow{a}| = 3$, $|\overrightarrow{b}| = 4$ and $|\overrightarrow{a}|$ and $|\overrightarrow{a}|$ b = 9 then find $|\overrightarrow{a}|$ x b Solution: $\overrightarrow{a}.\overrightarrow{b} = |\overrightarrow{a}| |\overrightarrow{b}| \cos \theta$ $$\therefore$$ 9 = 3 x 4 cos θ Hence $\sin \theta = \sqrt{1 - \cos^2 \theta}$ $$= \sqrt{1 \frac{\sqrt{9}}{16}} = \frac{\sqrt{7}}{4}$$ $$|\overrightarrow{a} \times \overrightarrow{b}| = |\overrightarrow{a}| |\overrightarrow{b}| \sin \theta$$ $$| \overrightarrow{a} \times b | = 3 \times 4 \times \frac{\sqrt{7}}{4} = 3\sqrt{7}$$ 3. Find the unit vectors perpendicular to the plane containing the vectors 2i + j + k and i + 2j + k. Solution: $$\overrightarrow{a} = 2 \overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k}, \ \overrightarrow{b} = \overrightarrow{i} + 2 \overrightarrow{j} + \overrightarrow{k}$$ $$\overrightarrow{a} \times \overrightarrow{b} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 2 & 1 & 1 \\ 1 & 2 & 1 \end{vmatrix}$$ $$= \overrightarrow{i} (1-2) - \overrightarrow{j} (2-1) + \overrightarrow{k} (4-1)$$ $$= -\overrightarrow{i} - \overrightarrow{j} + 2 \overrightarrow{k}$$ $$\therefore \overrightarrow{n} = \pm \begin{vmatrix} \overrightarrow{a} \times \overrightarrow{b} \\ \overrightarrow{a} \times \overrightarrow{b} \end{vmatrix} = \pm \begin{vmatrix} -\overrightarrow{i} - \overrightarrow{j} + 3 \overrightarrow{k} \\ -\overrightarrow{\sqrt{1+1+9}} \end{vmatrix} = \pm \begin{vmatrix} -\overrightarrow{i} - \overrightarrow{j} + 3 \overrightarrow{k} \\ -\overrightarrow{\sqrt{1+1+9}} \end{vmatrix}$$ 4. Find the vectors whose length 5 and which are perpendicular to the vectors $$\vec{a} = 3\vec{i} + \vec{j} - 4\vec{k}$$ and $\vec{b} = 6\vec{i} + 5\vec{j} - 2\vec{k}$. Solution: $$\vec{a} = 3\vec{i} + \vec{j} - 4\vec{k}$$ $\vec{b} = 6\vec{i} + 5\vec{j} - 2\vec{k}$ $\vec{a} \times \vec{b} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 3 & 1 & -4 \\ 6 & 5 & -2 \end{vmatrix}$ $= \vec{i}(-2 + 20) - \vec{j}(-6 + 24) + \vec{k}(15 - 6)$ $= 18\vec{i} - 18\vec{j} + 9\vec{k}$ $$=\sqrt{324+324+81}=\sqrt{729}$$ ∴ Vectors whose length 5 and which are perpendicular to a and b is $$\overrightarrow{n} = \frac{\overrightarrow{a} \times \overrightarrow{b}}{|\overrightarrow{a} \times \overrightarrow{b}|}$$ $$= \frac{5(18i - 18j + 9k)}{\sqrt{729}} = \frac{90i - 90j + 45k}{\sqrt{27}}$$ $$= \frac{10i - 10j + 5k}{3} = \frac{10i - 10j + 5k}{3}$$ 5. Find the angle between two vectors \overrightarrow{a} and \overrightarrow{b} if $|\overrightarrow{a} \times \overrightarrow{b}| = \overrightarrow{a} \cdot \overrightarrow{b}$. Solution: $$|a \times b| = a. b$$ $$|a| |b| \sin \theta = |a| |b| \cos \theta$$ $$=>\frac{\sin\theta}{\cos\theta}$$ $=> 1$ $$\Rightarrow$$ tan $\theta = 1 \Rightarrow \theta = \frac{\pi}{4}$ 6. If $|\vec{a}| = 2$, $|\vec{b}| = 7$ and $\vec{a} \times \vec{b} = 3\vec{i} - 2\vec{j} + 6\vec{k}$ find angle between \vec{a} and \vec{b} Solution: $$\overrightarrow{a} \times \overrightarrow{b} = 3\overrightarrow{i} - 2\overrightarrow{j} + 6\overrightarrow{k}$$ $$\therefore |\vec{a} \times \vec{b}| = \sqrt{9 + 4 + 36} = \sqrt{49} = 7$$ $$\begin{vmatrix}
\rightarrow \\ a \end{vmatrix} \begin{vmatrix} \rightarrow \\ b \end{vmatrix} \sin \theta = 7$$ $$2 \times 7 \times \sin \theta = 7$$ $$\Rightarrow$$ $\sin \theta = \frac{1}{2} \Rightarrow \theta = \frac{\pi}{6}$ 7. If $\overrightarrow{a} = \overrightarrow{i} + 3\overrightarrow{j} - 2\overrightarrow{k}$ and $\overrightarrow{b} = -\overrightarrow{i} + 3\overrightarrow{k}$ then find $\overrightarrow{a} \times \overrightarrow{b}$. Verify that \overrightarrow{a} and \overrightarrow{b} Solution: $$\vec{a} \times \vec{b} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & 3 & -2 \\ -1 & 0 & 3 \end{vmatrix}$$ $$= \vec{i} (9 - 0) - \vec{j} (3 - 2) + \vec{k} (0 + 3)$$ $$= 9\vec{i} - \vec{j} + 3\vec{k}$$ $$\vec{a} \cdot (\vec{a} \times \vec{b}) = (\vec{i} + 3\vec{j} - 2\vec{k}) \cdot (9\vec{i} - \vec{j} + 3\vec{k})$$ $$= 9 - 3 - 6 = 0$$ \Rightarrow and $(\vec{a} \times \vec{b})$ are perpendicular $$\vec{b}$$. $(\vec{a} \times \vec{b}) = (-\vec{i} + 3\vec{k})$. $(9\vec{i} - \vec{j} + 3\vec{k})$ $$= -9 + 0 + 9 = 0$$ \Rightarrow b and $(a \times b)$ are perpendicular 8. For any three vectors a, b, c show that $$a \times (b + c) + b \times (c + a) + c \times (a + b) = 0.$$ Solution: $$\overrightarrow{a} \times (\overrightarrow{b} + \overrightarrow{c}) + \overrightarrow{b} \times (\overrightarrow{c} + \overrightarrow{a}) + \overrightarrow{c} \times (\overrightarrow{a} + \overrightarrow{b})$$ $$= (\overrightarrow{a} \times \overrightarrow{b}) + (\overrightarrow{a} \times \overrightarrow{c}) + (\overrightarrow{b} \times \overrightarrow{c}) + (\overrightarrow{b} \times \overrightarrow{a})$$ $$+ (\overrightarrow{c} \times \overrightarrow{a}) + (\overrightarrow{c} \times \overrightarrow{b})$$ $$=\vec{0}$$ Since $$(\overrightarrow{a} \times \overrightarrow{b}) = -(\overrightarrow{b} \times \overrightarrow{a})$$ $$(a \times c) = -(c \times a)$$ and $$(b \times c) = -(c \times b)$$ 9. Let \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} be unit vectors such that \overrightarrow{a} . $\overrightarrow{c} = 0$ and the angle between \overrightarrow{b} and \overrightarrow{c} is $\frac{\pi}{6}$. Prove that $\overrightarrow{a} = \underline{+} 2 (\overrightarrow{b} \times \overrightarrow{c})$. Solution: Given: $\vec{a} \cdot \vec{b} = 0$ and $\vec{a} \cdot \vec{c} = 0$ Angle between \overrightarrow{b} and \overrightarrow{c} is $\frac{\pi}{6}$ = $> \vec{a}$ is perpendicular to the plane containing \vec{b} and \vec{c} and the angle between \vec{b} and \vec{c} is (in other words $\vec{n} = \vec{a}$) $\therefore \vec{b} \times \vec{c} = |\vec{b}| |\vec{c}| \sin \theta \text{ n where } \theta \text{ is the angle between } \vec{b} \text{ and } \vec{c}$ = 1 x 1 sin $\frac{\pi}{6}$ a since b, c are unit vectors $$=\frac{1}{2}$$ $\overrightarrow{a} \Rightarrow 2$ ($\overrightarrow{b} \times \overrightarrow{c}$) or in general $\overrightarrow{a} + 2$ ($\overrightarrow{b} \times \overrightarrow{c}$) 10. If $$\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{c} \times \overrightarrow{d}$$ and $\overrightarrow{a} \times \overrightarrow{c} = \overrightarrow{b} \times \overrightarrow{d}$ Show that a - d and b - c are parallel. Solution $$(a-d) \times (b-c) = (\overrightarrow{a} \times \overrightarrow{b}) - (\overrightarrow{a} \times \overrightarrow{c}) - (\overrightarrow{d} \times \overrightarrow{b}) + (\overrightarrow{d} \times \overrightarrow{c})$$ $$= (\overrightarrow{a} \times \overrightarrow{b}) - (\overrightarrow{a} \times \overrightarrow{c}) + (\overrightarrow{b} \times \overrightarrow{d}) - (\overrightarrow{c} \times \overrightarrow{d})$$ $$= 0$$ $$\Rightarrow$$ $(a-d)$ and $(b-c)$ are parallel. #### **EXERCISE 2.4** 1. Find the area of parallelogram ABCD whose vertices are Solution: Let O be the point of reference and $\overrightarrow{OA} = -5i + 2j + 5k$. $$\overrightarrow{OB} = -3i + 6j + 7k$$ $\overrightarrow{OC} = 4i - j + 5k$ and $\overrightarrow{OD} = 2i - 5j + 3k$ Area of parallelogram ABCD = $|\overrightarrow{AB} \times \overrightarrow{AC}|$ $$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = \overrightarrow{2i} + \overrightarrow{4j} + \overrightarrow{2k}$$ $$\overrightarrow{AC} = \overrightarrow{OC} - \overrightarrow{OA} = \overrightarrow{9i} - \overrightarrow{3j}$$ $$|AB \times AC| = 6\sqrt{59}$$. 2. Find the area of the parallelogram whose diagonals are represented by $$\overrightarrow{2i}$$ + 3j + 6k and 3i – 6j + 2k Solution: Let $$d_1 = 2i + 3j \ 6k$$ $d_2 = 3i - 6j + 2k$ Area of parallelogram = $\frac{1}{2} |\vec{d_1} \times \vec{d_2}|$ $$\vec{d_1} \times \vec{d_2} = 2 \quad 3 \quad 6 = 42\vec{i} + 14\vec{j} + 21\vec{k}$$ $$3 \quad -6 \quad 2$$ $$= 7 (6\vec{i} + 2\vec{j} - 3\vec{k}) = 7 \times |\vec{6}\vec{i} + 2\vec{j} - 3\vec{k}|$$ $$\frac{1}{2} |d_1 \times d_2| = \frac{7}{2} \sqrt{(6)^2 + (2)^2 + (-3)^2}$$ $$= \frac{7}{2} \sqrt{49} = \frac{49}{2} \text{ sq. units.}$$ 3. Find the area of the parallelogram determined by the sides $$\overrightarrow{i} + 2\overrightarrow{j} + 3\overrightarrow{k}$$ and $-3\overrightarrow{i} - 2\overrightarrow{j} + \overrightarrow{k}$ Solution: Let $$\vec{a} = \vec{i} + 2\vec{j} + 3\vec{k}$$ and $\vec{b} = 3\vec{i} - 2\vec{j} + \vec{k}$ $$\vec{a} \times \vec{b} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & 2 & 3 \\ -3 & -2 & 1 \end{vmatrix} = 8\vec{i} - 10\vec{j} + 4\vec{k}$$ Area = $\vec{a} \times \vec{b} = \sqrt{(8)^2 + (-10)^2 + (-4)^2}$ $$= \sqrt{180} = 6\sqrt{5} \text{sq. units.}$$ 4. Find the area of the triangle whose vertices are (3, -1, 2), (1, -1, -3) and (4, -3, 1) Solution: Let ABC be the given triangle and let $\overrightarrow{OA} = \overrightarrow{3i} - \overrightarrow{j} + 2\overrightarrow{k}$ $$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = \overrightarrow{2i} - \overrightarrow{5k}$$ $$\overrightarrow{AC} = \overrightarrow{OC} - \overrightarrow{OA} = \overrightarrow{i} - 2\overrightarrow{j} - \overrightarrow{k}$$ $$\overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} i & j & k \\ -2 & 0 & -5 \\ 1 & -2 & -1 \end{vmatrix} = -10i - 7j + 4k$$ $$\frac{1}{2}$$ | AB x AC | = $\frac{1}{2}$ | -10i - 7j + 4k | $$= \frac{1}{2}\sqrt{(-10)^2 + (-7)^2 + (4)^2}$$ $$= \frac{1}{2}\sqrt{165} \text{ sq. units.}$$ 5. Prove by vector method that the parallelograms on the same base and between the same parallels are equal in area. Solution: Let ABCD be the given parallelogram and ABCD be the new parallelogram with same Base AB and between the same parallel lines \overrightarrow{AB} and \overrightarrow{DC} The vector area of ABCD = $\overrightarrow{AB} \times \overrightarrow{AD}$ $$= \overrightarrow{AB} \times (\overrightarrow{AD'} + \overrightarrow{DD'})$$ $$= (AB \times A'D) + AB + 0$$ = vector area of ABCD i. e. area of ABCD = area of ABCD' 6. Prove that twice the area of a parallelogram is equal to the area of another parallelogram formed by taking as its adjacent sides the diagonals of the former parallelogram. Solution: Let ABCD be the given parallelogram $$\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC}$$ $$\overrightarrow{BD} = \overrightarrow{BC} + \overrightarrow{CD} = \overrightarrow{BC} = \overrightarrow{BC} - \overrightarrow{AB}$$ Area of the parallelogram with AC and BD as adjacent sides $$= |\overrightarrow{AC} \times \overrightarrow{BD}|$$ $$= |(\overrightarrow{AB} + \overrightarrow{BC}) \times (\overrightarrow{BC} - \overrightarrow{AB})|$$ $$= |\overrightarrow{AB} \times \overrightarrow{BC} - \overrightarrow{AB} \times \overrightarrow{AB} + \overrightarrow{BC} \times \overrightarrow{BC} - \overrightarrow{BC} \times \overrightarrow{AB}|$$ $$= |\overrightarrow{AB} \times \overrightarrow{BC} + \overrightarrow{AB} \times \overrightarrow{BC}| = 2 |\overrightarrow{AB} \times \overrightarrow{BC}|$$ = 2 (area of the parallelogram ABCD) 7. Prove that sin(A - B) = sin A cos B - cos A sin B. Solution: Take the points P and Q on the unit circle with centre at the origin O. Assume that OP and OQ make angles. A and B with x-axis respectively. $$POQ = POx + QOx = A - B$$ Clearly the co-ordinates of P and Q are (sos A. sin A) and (cos B, sin B). Take the unit vectors \overrightarrow{i} and \overrightarrow{j} along x and axes respectively. $$\overrightarrow{OP} = \overrightarrow{OM} + \overrightarrow{MP}$$ $$= \cos A \overrightarrow{i} + \sin A \overrightarrow{j}$$ $$\overrightarrow{OQ} = \overrightarrow{OL} + \overrightarrow{LQ}$$ $$= \cos \overrightarrow{Bi} + \sin \overrightarrow{Bj}$$ $$\overrightarrow{OQ} \times \overrightarrow{OP} = |\overrightarrow{OQ}| |\overrightarrow{OP}| \sin (A - B) \overrightarrow{k} = \sin (A - B) \overrightarrow{k}$$ $$\overrightarrow{i} \overrightarrow{j} \overrightarrow{k}$$ $$\cos A \sin B = 0$$ $$\cos A \sin A = 0$$ $$\cos A \sin A = 0$$ From (1) and (2) $$sin (A - B) = sin A cos B - cos A sin B$$ 8. Forces 2i + 7j, 2i - 5j + 6k, i + 2j - k act at a point P whose position vector is 4i - 3j - 2k. find the moment of the resultant of three forces acting at P about the point Q whose position vector 6i + j - 3k. Solution: The resultant force $\overrightarrow{F} = \overrightarrow{F1} + \overrightarrow{F2} + \overrightarrow{F3}$ $$\overrightarrow{F} = (2\overrightarrow{i} + 7\overrightarrow{j}) + (2\overrightarrow{i} - 5\overrightarrow{j} + 6\overrightarrow{k}) + (-\overrightarrow{i} + 2\overrightarrow{j} - \overrightarrow{k})$$ $$= 3\overrightarrow{i} + 4\overrightarrow{j} + 5\overrightarrow{k}$$ Let $$\overrightarrow{OP} = \overrightarrow{4i} - \overrightarrow{3j} - 2\overrightarrow{k}$$ and $\overrightarrow{OQ} = 6\overrightarrow{i} + \overrightarrow{j} - 3\overrightarrow{k}$ $\overrightarrow{r} = \overrightarrow{OP} - \overrightarrow{OQ}$ [through (or at) – about] $$\begin{array}{ccc} & \rightarrow & \rightarrow & \rightarrow \\ & = & -2i & -4j & +k \\ & \rightarrow & \rightarrow & \rightarrow \end{array}$$ Moment $\overrightarrow{M} = \overrightarrow{r} \times \overrightarrow{F}$ $| \overrightarrow{i} \quad \overrightarrow{j}
\quad \overrightarrow{k} |$ $$= \begin{vmatrix} t & j & k \\ -2 & -4 & 1 \\ 3 & 4 & 5 \end{vmatrix}$$ $$\rightarrow$$ \rightarrow \rightarrow \rightarrow $M = -24i + 13j + 4k$ 9. Show that torque about the point A(3, -1, 3) of a force 4i + 2j + k through the point B (5, 2, 4) is i + 2j - 8k. Solution: Let $$\overrightarrow{F} = 4\overrightarrow{i} + 2\overrightarrow{j} + k$$ Let $$\overrightarrow{OA} = 3i - j + 3k$$ and $\overrightarrow{OB} = 5i + 2j + 4k$ $$\overrightarrow{r} = \overrightarrow{OB} - \overrightarrow{OA} = 2\overrightarrow{i} + \overrightarrow{3}\overrightarrow{j} + \overrightarrow{k}$$ Torque (moment) $\overrightarrow{M} = \overrightarrow{r} \times \overrightarrow{F}$ $$\begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 2 & 3 & 1 \\ 4 & 2 & 1 \end{vmatrix}$$ Torque $$= \vec{i} + 2\vec{j} - 8\vec{k}$$ - 10. Find the magnitude and direction cosines of the moment about the point - (1, -2, 3) of a force $\overrightarrow{2i} + \overrightarrow{3j} + \overrightarrow{6k}$ whose line of action passes through the origin. Solution: $$\overrightarrow{F} = 2 \overrightarrow{i} + 3 \overrightarrow{j} + 6 \overrightarrow{k}$$ Let $$\overrightarrow{OP} = \overrightarrow{O} AND \overrightarrow{OA} = i - 2j + 3k$$ $$R = \overrightarrow{OP} - \overrightarrow{OA} = -\overrightarrow{i} + \overrightarrow{2j} - \overrightarrow{3k}$$ $$\overrightarrow{M} = \overrightarrow{r} \times \overrightarrow{F}$$ $$|\overrightarrow{r} \times \overrightarrow{F}| = \sqrt{(21)^2 + (-7)^2} = 7\sqrt{10}$$ ## **EXERCISE – 2.5** 1. Show that vectors a, b, c are coplanar if and only if $$\overrightarrow{a}$$ + \overrightarrow{b} , \overrightarrow{b} + \overrightarrow{c} , \overrightarrow{c} + \overrightarrow{a} are coplanar $$\Leftrightarrow$$ 2 [A B C] = 0 2. The volume of a parallelepiped whose edges are represented by → → → → → → → $$-12i + mk$$, $3j - k$, $2i + j - 15k$ is 546. Find the value of m . Solution: Let $$\overrightarrow{a} = -12\overrightarrow{i} + \overrightarrow{m} \overrightarrow{k}$$, $\overrightarrow{b} = 3\overrightarrow{j} - \overrightarrow{k}$, $\overrightarrow{c} = 2\overrightarrow{i} + \overrightarrow{j} - 15\overrightarrow{k}$ Volume of the parallelepiped = $$[a \ b \ c] = 546$$ $$-12(-45+1) + m 90-6) = 546$$ $$= m = -3$$ 3. Prove that |[a b c]| = abc if and only [a, b], [c, c] are mutually perpendicular. Solution: \vec{a} , \vec{b} , \vec{c} are mutually perpendicular \Leftrightarrow |[a b c]| is the volume of a cuboids where a, b, c are the co-terminus edges. $$\Leftrightarrow |[a \ b \ c]| = |\overrightarrow{a}| |\overrightarrow{b}| |\overrightarrow{c}|$$ $$\Leftrightarrow |[a \ b \ c]| = abc$$ 4. Show that the points (1, 3, 1), (1, 1, -1), (-1, 1, 1) (2, 2, -1) are lying on the same plane. (Hint: It is enough to prove any three vectors formed by these four points are coplanar). Solution: Let $\overrightarrow{OA} = \overrightarrow{i} + 3\overrightarrow{j} + \overrightarrow{k}$, $\overrightarrow{OB} = \overrightarrow{i} + \overrightarrow{j} - \overrightarrow{k}$, $\overrightarrow{OC} = \overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k}$ and $\overrightarrow{OD} = 2\overrightarrow{i} + 2\overrightarrow{j} - \overrightarrow{k}$ $$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = -2\overrightarrow{j} - 2\overrightarrow{k}$$ $$\overrightarrow{AC} = \overrightarrow{OC} - \overrightarrow{OA} = 2\overrightarrow{i} - 2\overrightarrow{j}$$ $$\overrightarrow{AD} = \overrightarrow{OD} - \overrightarrow{OA} = \overrightarrow{i} - \overrightarrow{j} - 2\overrightarrow{k}$$ $$\rightarrow$$ \rightarrow 0 -2 -2 [AB, AC, AD] = -2 -2 0 = 0 1 -1 -2 Hence the above points are lying on the same plane. 5. If $$\overrightarrow{a} = 2i + 3j - k$$, $\overrightarrow{b} = -2i + 5k$, $\overrightarrow{c} = j - 3k$ Verify that $$\overrightarrow{a} \times (\overrightarrow{b} \times \overrightarrow{c}) = (\overrightarrow{a} \cdot \overrightarrow{c}) \overrightarrow{b} - (\overrightarrow{a} \cdot \overrightarrow{b}) \overrightarrow{c}$$ Solution: $$\overrightarrow{a} \times (\overrightarrow{b} \times \overrightarrow{c}) = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 2 & 3 & -1 \\ -5 & -6 & -2 \end{vmatrix}$$ $$= 12\overrightarrow{i} + 9\overrightarrow{j} + 3\overrightarrow{k}$$ $$(\vec{a}. \vec{c}) = (2(0) + 3(1) + (-1) (-3)) = 6$$ $$(\overrightarrow{a}.\overrightarrow{c})\overrightarrow{b} = -1\overrightarrow{2i} + 30\overrightarrow{k}$$ $$(a. \ b) = \{(2) (-2) + (3) (0) + (-1) (5) \} = -9$$ $(a. \ b) \ c = -9j + 27k$ $$(\overrightarrow{a}.\overrightarrow{c})\overrightarrow{b} - (\overrightarrow{a}.c)c = -12\overrightarrow{i} + \overrightarrow{9}\overrightarrow{j} + \overrightarrow{3}\overrightarrow{k}$$ Hence $\overrightarrow{a} \times (\overrightarrow{b} \times \overrightarrow{c}) = (\overrightarrow{a}, \overrightarrow{c}) \overrightarrow{b} - (\overrightarrow{a}, \overrightarrow{b}) \overrightarrow{c}$ 6. Prove that $$\overrightarrow{a} \times (\overrightarrow{b} \times \overrightarrow{c}) + \overrightarrow{b} \times (\overrightarrow{c} \times \overrightarrow{a}) + \overrightarrow{c} \times (\overrightarrow{a} \times \overrightarrow{b}) = 0$$ Solution: LHS = $$\overrightarrow{a} \times (\overrightarrow{b} \times \overrightarrow{c}) + \overrightarrow{b} \times (\overrightarrow{c} \times \overrightarrow{a}) + \overrightarrow{c} \times (\overrightarrow{a} \times \overrightarrow{b})$$ = $(\overrightarrow{a}. \overrightarrow{c}) \overrightarrow{b} - (\overrightarrow{a}. \overrightarrow{b}) \overrightarrow{c} + (b. \overrightarrow{a}) \overrightarrow{c} - (b. c) a$ + $(\overrightarrow{c}. \overrightarrow{b}) \overrightarrow{a} - (\overrightarrow{c}. \overrightarrow{a}) \overrightarrow{b}$ = 0 R. H. S. 7. If $$\vec{a} = 2 \vec{i} + 3 \vec{j} - 5 \vec{k}$$, $\vec{b} = -\vec{i} + \vec{j} + 2 \vec{k}$ and $\vec{c} = 4 \vec{i} - 2 \vec{j} + 3 \vec{k}$, show that $(\vec{a} \times \vec{b}) \times \vec{c} \neq \vec{a} \times (\vec{b} \times \vec{c})$ solution: $$\overrightarrow{a} \times \overrightarrow{b} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 2 & 3 & -5 \\ -1 & 1 & 2 \end{vmatrix} = 1\overrightarrow{1i} + \overrightarrow{j} + 5\overrightarrow{k}$$ $$(\overrightarrow{a} \times \overrightarrow{b}) \times \overrightarrow{c} = 11 \quad 1 \quad 5 \quad = 13i - 13j - 26\overrightarrow{k}$$ $$\overrightarrow{b} \times \overrightarrow{c} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ - & 1 & 2 \\ 4 & -2 & 3 \end{vmatrix} = \overrightarrow{7i} + 1\overrightarrow{1j} - 2\overrightarrow{k}$$ $$\overrightarrow{a} \times (\overrightarrow{b} \times \overrightarrow{c}) = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 2 & 3 & -5 \\ 7 & 11 & -2 \end{vmatrix} = 49 i - 31 j + k$$ $$(\overrightarrow{a} \times \overrightarrow{b}) \times \overrightarrow{c} \neq \overrightarrow{a} \times (\overrightarrow{b} \times \overrightarrow{c})$$ 8. prove that $(\overrightarrow{a} \times \overrightarrow{b}) \times \overrightarrow{c} = \overrightarrow{a} \times (\overrightarrow{b} \times \overrightarrow{c})$ iff a and c are collinear. Where the vector triple product is non zero. Solution: given $(\vec{a} \times \vec{b}) \times \vec{c} = \vec{a} \times (\vec{b} \times \vec{c})$ $$(a \cdot b) \cdot c - (b \cdot c) \cdot a = (a \cdot c) \cdot b - (a \cdot b) \cdot c$$ $$\Leftrightarrow$$ (a. b) c = (b.c) a $$\Leftrightarrow$$ a = $\left(\frac{a \cdot b}{c \cdot b}\right)$.c - ⇔ a and c are collinear . - 9. For any vector ਕੋ Prove that $$\vec{i}$$ x $(\vec{a} \times \vec{i}) + \vec{j} \times (\vec{a} \times \vec{j}) + \vec{k} \times (\vec{a} \times \vec{k}) = 2\vec{a}$ Solution: Let $$\overrightarrow{a} = \overrightarrow{a_1} \overrightarrow{i} + \overrightarrow{a_2} \overrightarrow{j} + \overrightarrow{a_3} \overrightarrow{k}$$ $\overrightarrow{i} \times (\overrightarrow{a} \times \overrightarrow{b}) = (\overrightarrow{i}. \overrightarrow{i}) \overrightarrow{a} - (\overrightarrow{i}. \overrightarrow{a}) \overrightarrow{i} = \overrightarrow{a} - \overrightarrow{a_1} \overrightarrow{i}$ $\overrightarrow{j} \times (\overrightarrow{a} \times \overrightarrow{j}) = (\overrightarrow{j}. \overrightarrow{j}) \overrightarrow{a} - (\overrightarrow{j}. \overrightarrow{a}) \overrightarrow{j} = \overrightarrow{a} - \overrightarrow{a_2} \overrightarrow{j}$ $\overrightarrow{k} \times (\overrightarrow{a} \times \overrightarrow{k}) = (\overrightarrow{k}. \overrightarrow{k}) \overrightarrow{a} = (\overrightarrow{k}. \overrightarrow{a}) \overrightarrow{k} = \overrightarrow{a} - \overrightarrow{a_3} \overrightarrow{k}$ L.H.S. = $\overrightarrow{3a} - (\overrightarrow{a_1} \overrightarrow{i} + \overrightarrow{a_2} \overrightarrow{j} + \overrightarrow{a_3} \overrightarrow{k})$ $= 2\overrightarrow{a} = R.H.S$ 10. Prove that $(a \times b)$. $(c \times d) + (b \times c)$. $(a \times b) + (c \times a)$. $(b \times d) = 0$ Solution: $$(a \times b). (c \times b) = \begin{vmatrix} \overrightarrow{a} & \overrightarrow{c} \\ \overrightarrow{b} & \overrightarrow{c} \end{vmatrix} \begin{vmatrix} \overrightarrow{a} & \overrightarrow{d} \\ \overrightarrow{b} & \overrightarrow{d} \end{vmatrix}$$ $$= (\overrightarrow{a}.\overrightarrow{c}) (\overrightarrow{b}. \overrightarrow{d}) - (\overrightarrow{b}. \overrightarrow{c}) (\overrightarrow{a}. \overrightarrow{d})$$ $$(b \times c). (a \times d) = \begin{vmatrix} \overrightarrow{b} & \overrightarrow{d} \\ \overrightarrow{c} & \overrightarrow{d} \end{vmatrix} \begin{vmatrix} \overrightarrow{b} & \overrightarrow{d} \\ \overrightarrow{c} & \overrightarrow{d} \end{vmatrix}$$ $$= (\overrightarrow{b}. \overrightarrow{a}) (\overrightarrow{c}. \overrightarrow{d}) - (\overrightarrow{c}. \overrightarrow{a}) (\overrightarrow{b}. \overrightarrow{d})$$ $$(\overrightarrow{c} \times \overrightarrow{a}). (\overrightarrow{b} \times
\overrightarrow{d}) = \begin{vmatrix} \overrightarrow{c} & \overrightarrow{b} \\ \overrightarrow{a} & \overrightarrow{b} \end{vmatrix} \begin{vmatrix} \overrightarrow{c} & \overrightarrow{d} \\ \overrightarrow{a} & \overrightarrow{d} \end{vmatrix}$$ $$= (\overrightarrow{c}.\overrightarrow{b})(\overrightarrow{a}.\overrightarrow{d}) - (\overrightarrow{a}.\overrightarrow{b})(\overrightarrow{c}.\overrightarrow{d})$$ $$+$$ $(b. a)$ $(c. d)$ - $(c. a)$ $(b. d)$ $$(a.b)(a.d)$$ - $(a.b)(c.d)$ $$= 0 = R.H.S$$ 11. Find (axb). (cxd) if $$a = i + j + k$$ $$\overrightarrow{b} = 2\overrightarrow{i} + \overrightarrow{k}, \overrightarrow{c} = 2\overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k}, \overrightarrow{d} = \overrightarrow{i} + \overrightarrow{j} + 2\overrightarrow{k}$$ عَادٍ عَا Solution: $$(\overrightarrow{a} \times \overrightarrow{b}). (\overrightarrow{c} \times \overrightarrow{d}) = (\overrightarrow{a}. \overrightarrow{c}) (\overrightarrow{b}. \overrightarrow{d}) - (\overrightarrow{a}. \overrightarrow{d}) (\overrightarrow{b}. \overrightarrow{c})$$ $$\overrightarrow{a}$$. $\overrightarrow{c} = 2 + 1 + 1 = 4$ $$\overrightarrow{b} \cdot \overrightarrow{d} = 2 + 0 + 2 = 4$$ $$\rightarrow$$ a. d = 1 + 1 + 2 = 4 $$\rightarrow$$ \rightarrow b. c = 4 + 1 = 5 L.H.S = $$(4)(4) - (4)(5) = -4$$ 12. Verify $$(\overrightarrow{a} \times \overrightarrow{b}) \times (\overrightarrow{c} \times \overrightarrow{d}) = [\overrightarrow{a} \ \overrightarrow{b} \ \overrightarrow{c}] \ \overrightarrow{c} - [\overrightarrow{a} \ \overrightarrow{b} \ \overrightarrow{c}] \ \overrightarrow{a}$$ for \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} and d in problem 11. Solution: $$\overrightarrow{a} \times \overrightarrow{b} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 1 & 1 & 1 \\ 2 & 0 & 1 \end{vmatrix} = \overrightarrow{i} + \overrightarrow{j} - 2\overrightarrow{k}$$ $$\overrightarrow{c} \times \overrightarrow{d} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 2 & 1 & 1 \\ 1 & 1 & 2 \end{vmatrix} = \overrightarrow{i} - 3\overrightarrow{j} + \overrightarrow{k}$$ $$(\overrightarrow{a} \times \overrightarrow{b}) \times (\overrightarrow{c} \times \overrightarrow{d}) = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 1 & 1 & 2 \\ 1 & -3 & 1 \end{vmatrix} = \overrightarrow{-5}\overrightarrow{i} - 3\overrightarrow{j} - 4\overrightarrow{k}$$ $$\overrightarrow{[a} \overrightarrow{b} \overrightarrow{c}] = \begin{vmatrix} 1 & 1 & 1 \\ 2 & 0 & 1 \\ 1 & 1 & 2 \end{vmatrix} = 1$$ $$\overrightarrow{[a} \overrightarrow{b} \overrightarrow{c}] \overrightarrow{c} - \overrightarrow{[a} \overrightarrow{b} \overrightarrow{c}] \overrightarrow{d} = (-4\overrightarrow{i} - 2\overrightarrow{j} - 2\overrightarrow{k}) - (\overrightarrow{i} + \overrightarrow{j} + 2\overrightarrow{k})$$ $$= -5\overrightarrow{i} - 3\overrightarrow{i} - 4\overrightarrow{k}$$ $$(\overrightarrow{a} \times \overrightarrow{b}) \times (\overrightarrow{c} \times \overrightarrow{d}) = [\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}] \overrightarrow{c} - [\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}] \overrightarrow{d}$$ #### **EXERCISE - 2.6** 1. Find the d.c.s of a vector whose direction rations are 2, 3, - 6. Solution: $$\vec{r} = \sqrt{(2)^2 + (3)^2 + (-6)^2} = \sqrt{49} = 7$$ d.c.s are $$\frac{2}{7}$$, $\frac{3}{7}$, $\frac{-6}{7}$ - 2. (i) Can a vector have direction angles 30°, 45°, 60°. - (ii) Can a vector have direction angles 45°, 60°, 120°? Solution: (i) For direction angles $$\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$$ $\cos^2 30 + \cos^2 45 + \cos^2 60$ $= \frac{3}{4} \frac{1}{2} \frac{1}{4} \neq 1$ ∴ 30°, 45°, 60° are not possible to be direction angles. (ii) $$\cos^2 45 + \cos^2 60 + \cos^2 120 = \frac{1}{2} + \frac{1}{4} + \frac{1}{4} = 1$$, : yes 3. What are the d.c.s of the vector equally inclined to the axes? Solution: $$\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1 \text{ But } \alpha \beta = \gamma$$ $$\therefore \cos^2 \gamma = \frac{1}{3} = \cos \alpha \frac{1}{\sqrt{3}}$$ $$\therefore$$ The d.c. 's are $\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$ 4. A vector \overrightarrow{r} has length $35\sqrt{2}$ and direction ratios (3, 4, 5) find the direction cosines and components of \overrightarrow{r} . Solution: The direction rations are (3, 4, 5) $$\sqrt{3^{2} + 4^{2} + 5^{2}} = \sqrt{50} = 5\sqrt{2}$$ d.c.'s are $$\left(\frac{3}{5\sqrt{2}} \frac{4}{5\sqrt{2}} \frac{5}{5\sqrt{2}}\right)$$ $$\vec{r} = 35\sqrt{2} \frac{3i + 4j + 5k}{5\sqrt{2}}$$ $$\vec{r} = 7 [3\vec{i} + 4\vec{j} + 5\vec{k}] = 2\vec{1}\vec{i} + 2\vec{8}\vec{j} + 35\vec{k}$$ 5. Find direction cosines of the line joining (2, -3, 1) and (3, 1, -2). عَلِي عَل Solution: $$\vec{r} = \vec{a} + 1 \quad (\vec{b} - \vec{a})$$ $$\vec{r} = 2\vec{i} - 3\vec{j} + \vec{k} + 1 \quad (-\vec{i} - 4\vec{j} + 3\vec{k})$$.: d.r.'s are (-1, -4, 3) => $$r = \sqrt{(-1)^2 + (-4)^2} + 3^2 = \sqrt{26}$$ Direction cosines $\pm \left(\frac{-1}{\sqrt{26}}, \frac{-4}{\sqrt{26'}}, \frac{3}{\sqrt{26}}\right)$ Note: Since any one point can take as the first point, we have directions cosines are \pm () 6. Find the vector and Cartesian equation of the line through the point (3, -4, -2) and parallel to the vector $9\overrightarrow{i} + 6\overrightarrow{j} + 2\overrightarrow{k}$. Solution: Vector equation: $$\overrightarrow{r} = \overrightarrow{a} + i \overrightarrow{b}$$ where $\overrightarrow{a} = \overrightarrow{3i} - \overrightarrow{4j} - 2\overrightarrow{k}$, $\overrightarrow{b} = 9\overrightarrow{i} + 6\overrightarrow{j} + 2\overrightarrow{k}$ $\overrightarrow{r} = (\overrightarrow{3i} - 4\overrightarrow{j} - 2\overrightarrow{k}) + t (\overrightarrow{9i} + 6\overrightarrow{j} + 2\overrightarrow{k})$ Cartesian form: $$\frac{x-x_1}{l} = \frac{y-y}{m} = \frac{z-z_1}{n}$$ Where $(x_1, y_1, z_1) = (3, -4, -2)$ $(l, m, n) = (9, 6, 2)$ The equation of the line is $$\frac{x-3}{9} = \frac{y+4}{6} = \frac{z+2}{2}$$ 7. Find the vector and Cartesian equation of the line joining the points عَلِي عَل Solution: Vector equation: $$\overrightarrow{r} = \overrightarrow{a} + t (\overrightarrow{b} - \overrightarrow{a})$$ Where $$\overrightarrow{a} = \overrightarrow{i} - 2\overrightarrow{j} + \overrightarrow{k}$$ $\overrightarrow{b} = 2\overrightarrow{j} + 3\overrightarrow{k}$ $\overrightarrow{b} - \overrightarrow{a} = \overrightarrow{i} + 2\overrightarrow{k}$ $\overrightarrow{r} = (\overrightarrow{i} - 2\overrightarrow{j} + \overrightarrow{k}) + r(-\overrightarrow{i} + 2\overrightarrow{k})$ (or) $\overrightarrow{r} = (1 - t) \overrightarrow{a} + \overrightarrow{tb}$ i.e., $\overrightarrow{r} = (1 - t) (\overrightarrow{i} - 2\overrightarrow{j} + \overrightarrow{k}) + t (-2\overrightarrow{j} + 3\overrightarrow{k})$ Cartesian form: $$\frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 y} = \frac{z - z}{z_2 - z_1}$$ Here $(x_1, y_1, z_1) = (1, -2, 1)$; $(x_2, y_2, z_2) = (0, -2, 3)$ The equations is $$\frac{x-1}{-1} = \frac{y+2}{0} = \frac{z-1}{2}$$ 8. Find the angle between the following lines. $$\frac{x-1}{2} = \frac{y+1}{3} = \frac{z-4}{6}$$ and $x + 1 = \frac{y+2}{2} = \frac{z-4}{2}$ Solution: The parallel vectors to the lines are $\overrightarrow{u} = \overrightarrow{2i} + \overrightarrow{3j} + \overrightarrow{6k}$ and $$\overrightarrow{v}$$ = \overrightarrow{i} + $2\overrightarrow{j}$ + $2\overrightarrow{k}$ respectively Let θ be the angle between the given lines $$\cos \theta = \frac{\overrightarrow{u} \overrightarrow{v}}{|\overrightarrow{u}| |v|}$$ $$\overrightarrow{u}.\overrightarrow{v} = 20$$; $|\overrightarrow{u}| = 7$, $|\overrightarrow{v}| = 3$ $$\cos \theta = \left(\frac{20}{21}\right)$$ $$\theta = \cos^{-1} \frac{20}{21}$$ 9. Find the angle between the lines $$\vec{r} = 5\vec{i} - 7\vec{j} + \mu (-\vec{i} + 4\vec{j} + 2\vec{k})$$ $$\vec{r} = 2\vec{i} + \vec{k} + \mu (3\vec{i} + 4\vec{k})$$ $$\overrightarrow{u} = -\overrightarrow{i} + 4\overrightarrow{j} + 2\overrightarrow{k}$$ and $\overrightarrow{v} = 3\overrightarrow{i} + 4\overrightarrow{k}$ respectively $$\cos \theta \xrightarrow[|u| |v|]{} \rightarrow$$ $$\overrightarrow{u}.\overrightarrow{v} = 5; |\overrightarrow{u}| = \sqrt{21}. |\overrightarrow{v}| = 5$$ $$\cos \theta = \frac{5}{\sqrt{215}} = \frac{1}{\sqrt{21}}$$ $$\theta = \cos^{-1} \frac{1}{\sqrt{21}}$$ (i) $$\overrightarrow{r} = (2i + j - k) + t (i - 2j + 3k)$$ $$\overrightarrow{r} = (\overrightarrow{i} - 2\overrightarrow{j} + \overrightarrow{k}) + s (\overrightarrow{i} - 2\overrightarrow{j} + 3\overrightarrow{k})$$ (ii) $$\frac{x-1}{-1} = \frac{y}{3} = \frac{z+3}{2}$$ and $\frac{x-3}{-1} = \frac{y+1}{3} = \frac{z-1}{2}$ (i) Let $$\overrightarrow{u} = \overrightarrow{i} - 2\overrightarrow{j} + \overrightarrow{3}\overrightarrow{k}$$. $\overrightarrow{a_1} = 2\overrightarrow{i} - \overrightarrow{j} - \overrightarrow{k}$ and $\overrightarrow{a_2} = \overrightarrow{i} - 2\overrightarrow{j} + \overrightarrow{k}$ The parallel vectors to the lines are $$\overrightarrow{u} = \overrightarrow{-1} + \overrightarrow{4j} + 2\overrightarrow{k} \text{ and } \overrightarrow{v} = \overrightarrow{3i} + 4\overrightarrow{k} \text{ respectively}$$ Let θ be the angle between the given lines. $$\cos \theta = \frac{\overrightarrow{v}}{|u|} |\overrightarrow{v}|$$ $$\overrightarrow{u} \cdot \overrightarrow{v} = 5; \quad |\overrightarrow{u}| = \sqrt{21}. \quad |\overrightarrow{v}| = 5$$ $$\cos \theta = \frac{5}{\sqrt{215}} = \frac{1}{\sqrt{21}}$$ $$\theta = \cos^{-1} \frac{1}{\sqrt{21}}$$ EXERCISE $= 2.7$ 1. Find the shortest distance between the parallel lines $$(i) \overrightarrow{r} = (\overrightarrow{21} + \overrightarrow{j} - \overrightarrow{k}) + t \quad (\overrightarrow{i} - 2\overrightarrow{j} + 3\overrightarrow{k})$$ $$\overrightarrow{r} = (\overrightarrow{i} - 2\overrightarrow{j} + \overrightarrow{k}) + s \quad (\overrightarrow{i} -
2\overrightarrow{j} + 3\overrightarrow{k})$$ $$(ii) \frac{x-1}{-1} = \frac{y}{3} = \frac{z+3}{2} \text{ and } \frac{x-3}{-1} = \frac{y+1}{3} = \frac{z-1}{2}$$ Solution: $$(i) \text{ Let } \overrightarrow{u} = \overrightarrow{i} - 2\overrightarrow{j} + \overrightarrow{3k}, \qquad \overrightarrow{a}_1 = 2\overrightarrow{i} - \overrightarrow{j} - \overrightarrow{k} \text{ and } \overrightarrow{a}_2 = \overrightarrow{i} - 2\overrightarrow{j} + \overrightarrow{k}$$ Shortest distance between the lines $d = \frac{u \times (a_2 - a_1)}{|u|}$ $$\overrightarrow{u} \times (\overrightarrow{a}_2 - \overrightarrow{a}_1) = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 1 & -2 & 3 \\ -1 & = 1 & 2 \end{vmatrix} = \overrightarrow{i} - 5\overrightarrow{j} - 3\overrightarrow{k}$$ 112 AMARATHICHASAMAR MAATRIC HIGHER SECONDARY SCHOOLARAKKONAM - 12" MAATRIS 6 & 10 MARKS \$\display \display \d $$|\overrightarrow{u} \times (\overrightarrow{a}_2 - \overrightarrow{a}_1)| = \sqrt{(-1)^2(-5)^2 + (-3)^2} = \sqrt{35}$$ $|\overrightarrow{u}| = \sqrt{14}$ $$\therefore d = \frac{\sqrt{35}}{\sqrt{14}} = \sqrt{\frac{5}{2}}$$ (ii) Let $$\overrightarrow{u} = -\overrightarrow{i} + 3\overrightarrow{j} + 2\overrightarrow{k}$$ and $\overrightarrow{a_1} = \overrightarrow{i} - 3\overrightarrow{k}$ $$|\overrightarrow{u}| = \sqrt{14}$$ $$\overrightarrow{a_2} = 3\overrightarrow{i} - \overrightarrow{j} + \overrightarrow{k}$$ $$\overrightarrow{a_2} - \overrightarrow{a_1} = 2\overrightarrow{i} - \overrightarrow{j} - 4\overrightarrow{k}$$ $$\overrightarrow{u} \times (\overrightarrow{a_2} - \overrightarrow{a_1}) = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ -1 & 3 & 2 \\ 2 & -1 & -4 \end{vmatrix} = 1\overrightarrow{4i} + \overrightarrow{8j} - 5\overrightarrow{k}$$ $$|\overrightarrow{u} \times (\overrightarrow{a_2} - \overrightarrow{a_1})| = \sqrt{285}$$ $$\therefore d = \frac{\sqrt{285}}{\sqrt{14}} = \sqrt{\frac{285}{14}}$$ 2. Show that the following two lines are skew lines: $$\overrightarrow{r} = (\overrightarrow{3i} + 5\overrightarrow{j} + 7\overrightarrow{k}) + t (\overrightarrow{i} - 2j + k)$$ and $\overrightarrow{r} = (\overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k}) + s (\overrightarrow{7i} + \overrightarrow{6j} + 7\overrightarrow{k})$ Solution: Compare the given lines with $$\overrightarrow{r} = \overrightarrow{a_1} + \overrightarrow{tu}$$ and $\overrightarrow{r} = \overrightarrow{a_2} + \overrightarrow{sv}$ $$\overrightarrow{u} = \overrightarrow{i} - 2\overrightarrow{j} + \overrightarrow{k}$$ $$\overrightarrow{a_1} = 3\overrightarrow{i} + 5\overrightarrow{j} + 7\overrightarrow{k}$$ $$\overrightarrow{v} = 7\overrightarrow{i} + 6\overrightarrow{j} + 7\overrightarrow{k}$$ $$\overrightarrow{a_2} = \overrightarrow{l+j} + \overrightarrow{k}$$ $$\overrightarrow{a}_2 - \overrightarrow{a}_1 = -2i - 4j - 6k$$ $$[\overrightarrow{a_2} - \overrightarrow{a_1}) \overrightarrow{u} \overrightarrow{v}] = \begin{vmatrix} -2 & -4 & -6 \\ 1 & -2 & 1 \\ 7 & 6 & 7 \end{vmatrix} = 2 (-20) + 4(0) - 6(20)$$ = $-80 \neq 0$... The above lines are skew lines. 3. Show that the lines $\frac{x-1}{1} = \frac{y+1}{-1} = \frac{z}{3}$ and $\frac{x-2}{1} = \frac{y-1}{2} = \frac{-z-1}{1}$ intersect and ind their point of intersection. Solution: Condition for intersecting is d = 0 (i.e.,0 [(a₂-a₁) u v)] = 0 or $$\begin{vmatrix} x_2-x_1 & y_2-y_1 & z_2-z_1 \\ l_1 & m_1 & n_1 \\ l_2 & m_2 & n_2 \end{vmatrix}$$ Here $$(x_1, y_1, z_1) = (1, -1, 0)$$ $$(x_2, y_2, z_2) = (2, 1, -1)$$ $$(l_1, m_1, n_1) = (1, -1, 3)$$ $$(l_2, m_2, n_2) = (1, 2, -1)$$ $$[(\vec{a}_2 - \vec{a}_1) \ \vec{u} \ \vec{v}] = \begin{vmatrix} 1 & 2 & -1 \\ 1 & -1 & 3 \\ 1 & 2 & -1 \end{vmatrix} = 5 + 8 - 3 = 0$$ Further \vec{u} and \vec{v} are not parallel. ∴ The lines intersect For point of intersection, take $\frac{x-1}{1} = \frac{y+1}{-1} = \frac{z}{3}$ Any point on this line is of the form (m + 1, -m - 1. 3m). $\frac{x-2}{1} = \frac{y-1}{2} = \frac{z+1}{-1} = \mu$. Any point on this line is of the form $(\mu + 2, 2\mu + 1, -\mu - 1)$ $$(m + 1, -m - 1, 3m) = (\mu + 2, 2\mu + 1, -\mu - 1)$$ $$m + 1 = \mu + 2$$ $$m - \mu = 1$$ $$-m - 1 = 2 \mu = 2$$ $$m - 2 \mu = 2$$ Solving (1) and (2), $\mu = -1$, m = 0 \therefore To get the point of intersection either put $\mu = -1$ or m = 0 - \therefore The point of intersection is (1, -1, 0) - 4. Find the shortest distance between the skew lines $$\frac{x-6}{3} = \frac{y-7}{-1} = \frac{z-4}{1}$$ and $$\frac{x}{-3} = \frac{y+9}{2} = \frac{z-2}{4}$$ Solution: Shortest distance $$d = \frac{|\vec{a}_2 - \vec{a}_1| \vec{u} \vec{v}}{|\vec{u} \vec{v}|}$$ $\vec{u} = 3\vec{i} - \vec{j} + \vec{k}$ $\vec{a}_1 = \vec{6}\vec{j} + \vec{7}\vec{j} + 4\vec{k}$ $$\overrightarrow{v} = 3\overrightarrow{i} + 2\overrightarrow{j} + 4\overrightarrow{k}$$ $a_2 = 9\overrightarrow{j} + 2\overrightarrow{k}$ $$\overrightarrow{a_2} - \overrightarrow{a_1} = -\overrightarrow{6i} - 16\overrightarrow{j} - 2\overrightarrow{k}$$ $$\overrightarrow{u} \times \overrightarrow{v} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 3 & -1 & 1 \\ -3 & 2 & 4 \end{vmatrix} = -\overrightarrow{6i} - 15\overrightarrow{j} + 3\overrightarrow{k}$$ $$|\overrightarrow{u} \times \overrightarrow{v}| = \sqrt{270}$$ $$[(\vec{a}_2 - \vec{a}_1) \vec{u} \vec{v}] = \begin{vmatrix} -6 & -16 & -2 \\ 3 & -1 & 1 \\ -3 & 2 & 4 \end{vmatrix}$$ or $$(\vec{a}_1 - \vec{a}_1)$$ $(\vec{u} \times \vec{v}) = 36 + 240 - 6 = 270$ $$\therefore d = \frac{}{\sqrt{270}} = \sqrt{270}$$ $$= 3\sqrt{30}$$ 5. Show that (2, -1, 3), (1, -1, 0) and (3, -1, 6) are collinear. Solution: The equation passing through (2, -1, 3) and (1, -1, 0) is $$\frac{x-2}{-1} = \frac{y+1}{0} = \frac{z-3}{-3}$$ m (say) Any point on this line is of the form (-m + 2, -1, -3m + 3) The point (3, -1, 60) is obtained by putting m = -1 ... The third point lies on the same line. Hence three points are collinear. عَلِي عَل 6. If the points (m, 0, 3), (1, 3, -1) and 9-5, -3, 7) are collinear then find m. عَلِي عَل Solution: Since the three points are collinear, the position vector of three points are coplanar. Let $$\vec{a} = \vec{m} + \vec{3}\vec{k}$$, $\vec{b} = \vec{i} + \vec{3}\vec{j} - \vec{k}$ and $\vec{c} = -5\vec{i} - \vec{3}\vec{j} + \vec{7}\vec{k}$ $$\begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix} = \begin{vmatrix} m & 0 & 3 \\ 1 & 3 & -1 \\ -5 & -3 & 7 \end{vmatrix} = 0$$ $$18 m + 36 = 0 \Rightarrow m = -2.$$ # **EXERCISE - 2.8** Find the vector and Cartesian equations of a plane which is at a distance of 18 units from the origin and which is normal to the vector $$2i + 7j + 8k$$ Solution: Here $$p = 18$$ and $n = 2i + 7j + 3k$ $$\therefore \quad n = \frac{n}{|n|} = \frac{2i + 7j + 8k}{\sqrt{117}}$$ Hence the required vector equation of the plane is \vec{r} . \vec{n} = p $$\overrightarrow{r} \quad \frac{2 \ i + 7 \overrightarrow{j} + 8 \ k}{\sqrt{117}} \quad = \quad 18$$ Cartesian form: $$\vec{r}$$. $(2\vec{i} + 7\vec{j} + 9\vec{k}) = 18 \sqrt{117}$ r. $$(2i + 7j + 8k) = 54\sqrt{13}$$ $$(xi + yj + zk)$$. $(2i + 7j + 8k) = 54\sqrt{13}$ i.e., $2x + 7y + 8z = 54\sqrt{13}$ 2. Find the unit normal vectors to the plane 2x - y + 2z = 5. Solution: $$2x - y + 2z = 5 \Leftrightarrow (xi + yj + zk). (2i - j + 2k) = 5$$ Here $$\overrightarrow{n} = \overrightarrow{2i} - \overrightarrow{j} + 2\overrightarrow{k}$$ Unit normal vectors $$\pm$$ n = $\pm \frac{\overrightarrow{n}}{|\overrightarrow{n}|}$ = $\pm \frac{2\overrightarrow{i} - \overrightarrow{j} + 2\overrightarrow{k}}{3}$ 3. Find the length of the perpendicular from the origin to the plane $$\vec{r}$$. $(3i + 4j + 12\vec{k}) = 26$ Solution: Write the given equation in the form of \overrightarrow{r} . $\overrightarrow{n} = p$ Given $$\vec{r}$$. $(3\vec{i} + 4\vec{j} + 12\vec{k}) = 26 \implies \vec{r}$. $\left(3\vec{i} + 4\vec{j} + 12\vec{k}\right) = \frac{26}{\sqrt{169}}$ $\Rightarrow \vec{r}$. . $\left(3\vec{i} + 4\vec{j} + 12\vec{k}\right) = 2$ $$\therefore$$ Length of the perpendicular from origin p = 2 4. The foot of the perpendicular draw from the origin to a plane is (8, -4, 3). Find the equation of the plane. #### Solution: The required plane passing through the point a (8, -4, 3) and is perpendicular to OA $$\therefore \vec{a} = 8\vec{i} - 4\vec{j} + 3\vec{k} \text{ and } \vec{n} = \vec{OA} = 8\vec{i} - 4\vec{j} + 3\vec{k}$$ \therefore the required equation of the plane is \overrightarrow{r} . $\overrightarrow{n} = \overrightarrow{a}$. \overrightarrow{n} r. $$(8i - 4j + 3k) = (8i - 4j + 3k)$$. $(8i - 4j + 3k)$ The vector form is \vec{r} . (8i - 4j + 3k) = 89 Cartesian form: $$(\overrightarrow{xi} + \overrightarrow{yj} + z\overrightarrow{k})$$. $(8i - 4j + 3k) = 89$ $$=> 8x - 4y + 3z = 89$$ 5. Find the equation of the plane through the point whose p.v. is 2i - j + k and perpendicular to the vector 4i + 2j - 3k. # Solution: The required equation of the plane through $2\vec{i} - \vec{j} + \vec{k}$ and perpendicular to $4\vec{i} + 2\vec{j} - 3\vec{k}$ is Here $$\vec{a} = 2\vec{i} - \vec{j} + \vec{k}$$ and $\vec{n} = 4\vec{i} + 2\vec{j} - 3\vec{k}$ $$\overrightarrow{r}$$. $(4\overrightarrow{i} + 2\overrightarrow{j} - 3\overrightarrow{k}) = (2\overrightarrow{i} - \overrightarrow{j} + \overrightarrow{k})$ $(4\overrightarrow{i} + 2\overrightarrow{j} - 3\overrightarrow{k})$ i.e., $$r(4i + 2j - 3k) = 3$$ The Cartesian form is (x i + y j + 2k) (4i + 12j - 3k) = 3 ### **EXERCISE - 2.9** 1. Find the equation of the plane which contains the two lines $$\frac{x+1}{2} = \frac{y-2}{-3} = \frac{z-3}{4}$$ and $\frac{x-4}{3} = \frac{y-1}{2} = z-8$ Solution: The required equation of the plane through A (-1, 2, 3) and parallel to $$\overrightarrow{u} = 2\overrightarrow{i} - 3\overrightarrow{j} + 4\overrightarrow{k}$$ and $\overrightarrow{v} = 3\overrightarrow{i} + 2\overrightarrow{j} + 1\overrightarrow{k}$ The required equation is $\overrightarrow{r} = \overrightarrow{a} + \overrightarrow{s} +
\overrightarrow{u} + \overrightarrow{t} \overrightarrow{v}$ $$\overrightarrow{r} = (-\overrightarrow{i} + 2 \overrightarrow{j} + 3 \overrightarrow{k}) + s(2 \overrightarrow{i} - 3 \overrightarrow{j} + 4 \overrightarrow{k}) + t(3 \overrightarrow{i} + 2 \overrightarrow{j} + \overrightarrow{k})$$ Cartesian form: $$(x_1, y_1, z_1)$$ is $(-1, 2, 3)$; (l_1, m_1, n_1) is $(2, -3, 4)$ (l_2, m_2, n_2) is $(3, 2, 1)$ The equation of the plane is $\begin{vmatrix} x-x_1 & y-y_1 & z-z_1 \\ l_1 & m_1 & n_1 \\ l_2 & m_2 & n_2 \end{vmatrix} = 0$ i.e., $$\begin{vmatrix} x+1 & y-2 & z-3 \\ 2 & -3 & 4 \\ 3 & 2 & 1 \end{vmatrix} = 0$$ $$=> 11x - 10y - 13z + 70 = 0$$ This is the required equation in Cartesian form. Note: The above plane can be determined by passing through (-1, 2, 3), (4, 1, 8) and parallel to 2i - 3j + 4k or 3i + 2j + k 2. Can you draw a plane through the given two lines? Justify your answer. $$r = (i + 2j - 4k) + t(2i + 3j + 6k)$$ and $r = (3i + 3j + 5k) + s(2i + 3j + 8k)$ Solution: Comparing with $$\overrightarrow{r} = \overrightarrow{a_1} + \overrightarrow{t} \ \overrightarrow{u} \ ; \overrightarrow{r} = \overrightarrow{a_2} + \overrightarrow{s} \ \overrightarrow{v}$$ we get $$\overrightarrow{a_1} = \overrightarrow{i} + 2 \overrightarrow{j} - 4 \overrightarrow{k}$$ and $$\overrightarrow{a_2} = 3 \overrightarrow{i} + 3 \overrightarrow{j} - 5 \overrightarrow{k}$$ $$\overrightarrow{u} = 2 \overrightarrow{i} + 3 \overrightarrow{j} + 6 \overrightarrow{k}$$ and $$\overrightarrow{v} = -2 \overrightarrow{i} + 3 \overrightarrow{j} + 8 \overrightarrow{k}$$ $$[(\overrightarrow{a_2} - \overrightarrow{a_1}) \ \overrightarrow{u} \ \overrightarrow{v}] = \begin{bmatrix} 2 & 1 & -1 \\ 2 & 3 & 6 \\ -2 & 3 & 8 \end{bmatrix} = -28 \neq 0$$ These lines are not intersecting and u, v are not parallel. - :. they are skew lines. We can't draw a plane through the given two lines. - 3. Find the point of intersection of the line $$r = (j - k) + s (2 i - j + k)$$ and xz - p-lane Solution: Cartesian equation of the given line is $$\frac{X-0}{2} = \frac{Y-1}{-1} = \frac{Z+1}{1}$$ Equation of xz plane is y = 0 $$\therefore \frac{x}{2} = \frac{-1}{-1} = \frac{z+1}{1} \implies x = 2, z = 0$$ - \therefore The required point is (2, 0, 0) - 4. Find the meeting point of the line $$\overrightarrow{r} = (2 \overrightarrow{i} + \overrightarrow{j} - 3 \overrightarrow{k}) + t (2 \overrightarrow{i} - \overrightarrow{j} - \overrightarrow{k})$$ and the plane $x - 2y + 3z + 7 = 0$ Solution: Cartesian form of the line is $$\frac{x-2}{2} = \frac{y-2}{-1} = \frac{z+3}{-1} = m$$ (say) Any point on this line is of the form (2m + 2, -m, -m - 3) This point lie on the plane x - 2y + 3y + 7 = 0 $$(2m + 20 - 2(-m + 1) + 3(-m - 3) + 7 = 0$$ - \therefore The point is (6, -4, -5) - 5. Find the distance from the origin to the plane $$\overrightarrow{r}$$. $(2\overrightarrow{i} - \overrightarrow{j} + 5\overrightarrow{k}) = 7$ Solution: Cartesian form of the plane is $$2x - y + 5z - 7 = 0$$ Distance from the origin to the plane ax + by + cz + d = 0 is $$\Big|\frac{d}{\sqrt{a^2+b^2+c^2}}$$ $$=$$ $\frac{-7}{\sqrt{30}}$ $=$ $\frac{7}{\sqrt{30}}$ # 6. Find the distance between the parallel planes # Solution: Distance between two parallel planes $$ax + by + cz + d_1 = 0$$ $$ax + by + cz + d_2 = 0$$ $$\overrightarrow{d} = \frac{\overrightarrow{|d_1} - \overrightarrow{d_2}|}{\sqrt{a^2 + h^2 + c^2}}$$ The given planes are x - y + 3z + 5 = 0 and $x - y + 3z + \frac{7}{2} = 0$ $$d = \frac{|5 - \frac{7}{2}|}{\sqrt{(1)^2 + (-1)^2 + (3)^2}} = \frac{\frac{3}{2}}{\sqrt{11}} = \frac{3}{2\sqrt{11}}$$ ### **EXERCISE - 2.10** 1. Find the angle between the following planes: (i) $$2x + y - z = 9$$ and $x + 2y + z = 7$ (ii) $$2x - 3y + 4z = 1$$ and $-x + y = 4$ (iii) $$\overrightarrow{r}$$. $(3\overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k}) = 7$ and \overrightarrow{r} . $(\overrightarrow{i} + 4\overrightarrow{j} - 2\overrightarrow{k}) = 10$ Solution: (i) The normals to the given planes are $n_1 = 2\vec{i} + \vec{j} - \vec{k}$ and $n_2 = \vec{i} + 2\vec{j} + \vec{k}$ Let θ be the angle between the planes then $$\cos \theta = \frac{\overrightarrow{n_1} \overrightarrow{n_2}}{|\overrightarrow{n_1}|_{n_2}} = \frac{(2\overrightarrow{i+j-k})}{\sqrt{6}} \cdot \frac{(\overrightarrow{i}+\overrightarrow{j-k})}{\sqrt{6}}$$ $$= \frac{6}{\sqrt{6}\sqrt{6}} = \frac{1}{2}$$ $$=>\theta \frac{\pi}{3}$$ (ii) The normals to the given planes are $n_1 = 2i - 3j + k$ and $n_2 = i + j$ Let θ be the angle between the planes, then cos $$\theta = \frac{\frac{1}{n_1} \frac{n_2}{|n_2|}}{|n_2| \frac{1}{|n_2|}} = \frac{(2i+3)+k) \cdot (-i+j)}{\sqrt{29}}$$ $$= \frac{-5}{\sqrt{58}} = > \theta \quad \cos^{1} \frac{-5}{\sqrt{58}}$$ (iii) The normals to the given planes are $n_1 = 3$ i + j - k and $n_2 = \frac{1}{1} + 4 \frac{1}{1} - 2 \frac{1}{1} \frac{n_2}{n_2}$ Let θ be the angle between the planes then $\cos \theta = \frac{\frac{1}{3} \frac{1}{1} \frac{n_2}{n_2}}{|n_1| \frac{1}{|n_2|}} = \frac{9}{\sqrt{11} \sqrt{21}} = \frac{9}{\sqrt{231}}$ $$= > \theta = \cos \left(\frac{9}{\sqrt{231}} \right)$$ 2. Show that the following planes are at right angles. $$\overrightarrow{r} \cdot (2\overrightarrow{1} - \overrightarrow{j} + \overrightarrow{k}) = 15 \text{ and } \overrightarrow{r} \cdot (\overrightarrow{1} - \overrightarrow{j} - 3 \overrightarrow{k}) = 3.$$ Solution: The normals to the given plane are $$\overrightarrow{n_1} = 2 \overrightarrow{i} - \overrightarrow{j} + \overrightarrow{k} \text{ and } \overrightarrow{n_2} = \overrightarrow{i} - \overrightarrow{j} - 3 \overrightarrow{k}$$ $$= > \text{The normals are perpendicular.}$$ $$= > \text{The planes are at right angles.}$$ 3. The planes $\overrightarrow{r} \cdot (2\overrightarrow{1} + \mu \overrightarrow{j} - 3 \overrightarrow{k}) = 10$ and $\overrightarrow{r} \cdot (\mu \overrightarrow{i} + 3 \overrightarrow{j} + \overrightarrow{k}) = 5$ are perpendicular. Find μ . $$n_2 = \overrightarrow{i} + 4 \overrightarrow{j} - 2 \overrightarrow{k}$$ $$\cos \theta = \frac{\overrightarrow{n_1}}{|\overrightarrow{n_1}|} \frac{\overrightarrow{n_2}}{|\overrightarrow{n_2}|} = \frac{9}{\sqrt{11} \sqrt{21}} = \frac{9}{\sqrt{231}}$$ $$=>\theta = \cos^{-1} \left(\frac{9}{\sqrt{231}}\right)$$ $$\overrightarrow{r}$$. $(2\overrightarrow{i} - \overrightarrow{j} + \overrightarrow{k}) = 15$ and \overrightarrow{r} . $(\overrightarrow{i} - \overrightarrow{j} - 3\overrightarrow{k}) = 3$. $$\overrightarrow{n_1} = 2\overrightarrow{i} - \overrightarrow{j} + \overrightarrow{k}$$ and $\overrightarrow{n_2} = \overrightarrow{i} - \overrightarrow{j} - 3\overrightarrow{k}$ Solution: The normals to the given planes are $$\overrightarrow{n_1} = 2\overrightarrow{i} + \overrightarrow{\mu} \overrightarrow{j} - 3\overrightarrow{k}$$ and $\overrightarrow{n_2} = \overrightarrow{\mu} \overrightarrow{i} + 3\overrightarrow{j} + \overrightarrow{k}$ Since the planes are perpendicular $n_1 \cdot n_2 = 0$ $$\Rightarrow \overrightarrow{n_1}. \overrightarrow{n_2} = 2 \mu + 3 \mu - 3 = 0$$ $$=> 5 \mu = 9 => \mu = \frac{3}{5}$$ 4. Find the angle between the line $\frac{x-2}{3} = \frac{y+1}{-1} = \frac{z-3}{-2}$ and the plane $$3x + 4y + z + 5 = 0$$ Solution: The normal to the given plane is $\vec{n} = 3\vec{i} + 4\vec{j} + \vec{k}$ The parallel vector to the line $\vec{b} = \vec{3} \vec{i} - \vec{j} - \vec{2} \vec{k}$ Let θ be the angle between the line and plane. Then $$\sin \theta = \frac{\overrightarrow{b} \cdot \overrightarrow{n}}{|\overrightarrow{b}| |\overrightarrow{n}|}$$ $$\overrightarrow{b}$$. \overrightarrow{n} = (3) (3) + (-1) (4) + (-2) (1) $$|\overrightarrow{b}| = 2 |\overrightarrow{n}| = \sqrt{91}$$ $$\sin \theta = \frac{3}{2\sqrt{91}} = \theta \sin^{-1}\left(\frac{3}{2\sqrt{91}}\right)$$ 5. Find the angle between the line $\vec{r} = \vec{i} + \vec{j} + \vec{3k} + \mu$ ($2\vec{i} + \vec{j} - \vec{k}$) and the plane \vec{r} . ($\vec{i} + \vec{j}$) = . عَلِي عَل Solution: The normal to the given plane to $\overrightarrow{n} = \overrightarrow{i} + \overrightarrow{j}$ and the parallel vector the line $\overrightarrow{b} = 2\overrightarrow{i} + \overrightarrow{j} - \overrightarrow{k}$. Let θ be the angle between the line and the plane $$\sin \theta \xrightarrow[|b| |n|]{} \xrightarrow{b. n}$$ $$\overrightarrow{b}$$. \overrightarrow{n} = 3, ; $|\overrightarrow{b}|$ = $\sqrt{6}$; $|\overrightarrow{n}|$ = $\sqrt{2}$ $$\sin \theta \frac{6}{\sqrt{6}\sqrt{2}} = \frac{\sqrt{3}}{2}$$ $$=>\theta = \frac{\pi}{3}$$ # **EXERCISE - 2.11** 1. Find the vector equation of a sphere with centre having position vector 2i - j + 3k and radius 4 units. Also find the equation in Cartesian form. Solution: Vector equation of a sphere $|\overrightarrow{r} - \overrightarrow{c}| = a$ Here $$c = 2i - j + 3k$$ and $a = 4$.: Vector equation is $|\vec{r} - (\vec{2}i - \vec{j} + \vec{3}k)| = 4$ Cartesian form: Let $$\overrightarrow{r} = x \ \overrightarrow{i} + y \ \overrightarrow{j} + z \ \overrightarrow{k}$$ $$\overrightarrow{r} - \overrightarrow{c} = (x - 2) \ \overrightarrow{i} + (y + 1) \ \overrightarrow{j} + (z - 3) \ \overrightarrow{k}$$ $$\overrightarrow{|r} - \overrightarrow{c}|^2 = 4^2 \Rightarrow (x - 2)^2 + (y + 1)^2 + (z - 3)^2 = 16$$ $$\Rightarrow x^2 + y^2 + z^2 - 4x + 2y - 6z - 2 = 0$$ عَلِي عَل - 2. Find the vector and Cartesian equation of the sphere on the join of the points A and B having position vectors $2\vec{i} + 6\vec{j} 7\vec{k}$ and - $2\vec{i}$ + $4\vec{j}$ $3\vec{k}$ respectively as a diameter. Find also the centre and radius of the sphere. Solution: Vector equation of a sphere joining the points A and B whose p.v.s. and a and b is (r-a). (r-b) = 0 Here $$\overrightarrow{a} = 2\overrightarrow{i} + 6\overrightarrow{j} - 7\overrightarrow{k}$$ and $\overrightarrow{b} = 2\overrightarrow{i} + 4\overrightarrow{j} - 3\overrightarrow{k}$ $\overrightarrow{[r} - (2\overrightarrow{i} + 6\overrightarrow{j} - 7\overrightarrow{k}).]$ $\overrightarrow{[r}
- (-2\overrightarrow{i} + 4\overrightarrow{j} - 3\overrightarrow{k})] = 0$ Cartesian form: Let $$\overrightarrow{r} = x \overrightarrow{i} + y \overrightarrow{j} + z \overrightarrow{k}$$ $$\overrightarrow{r} - \overrightarrow{a} = (x - 2) \overrightarrow{i} + (y - 6) \overrightarrow{j} + (z + 7) \overrightarrow{k}$$ $$\overrightarrow{r} - \overrightarrow{b} = (x + 2) \overrightarrow{i} + (y - 4) \overrightarrow{j} + (z + 3) \overrightarrow{k}$$ $$\overrightarrow{(r} - \overrightarrow{a}) \cdot (\overrightarrow{r} - \overrightarrow{b}) = 0$$ عَلِي عَل $$=> (x-2)(x+2) + (y-6)(y-4) + (z+7)(z+3) = 0$$ $$=> x^2 + y^2 + z^2 - 10y + 10z + 41 = 0$$ Compare with $x^2 + y^2 + z^2 + 2ux + 2vy + 2wz + d = 0$ $$u = 0$$. $v = -5$, $w = 5$, $d = 41$ Centre is $$(-u, -v, -w) = (0, 5, -5)$$ radius is = $$\sqrt{u^2 + v^2 + w^2 - d}$$ = $\sqrt{25 + 25 - 41}$ = 3 3. Obtain the vector and Cartesian equation of the sphere whose centre is 91, -1, 1) and radius is the same as that of the sphere $$|\overrightarrow{r} - (\overrightarrow{i} + \overrightarrow{j} + 2\overrightarrow{k})| = 5.$$ Solution: Vector equation of sphere | r - c | = a Here $$\overrightarrow{c} = \overrightarrow{i} - \overrightarrow{j} + \overrightarrow{k}$$, $a = 5$ \therefore Vector equation is $| \mathbf{r} - (\mathbf{i} - \mathbf{j} + \mathbf{k}) | = 5$ Cartesian form: $$\overrightarrow{r} = \overrightarrow{x} \ i + y \ j + z \ k$$ and centre $(1, -1, 1)$, $a = 5$ $(x-1)^2 + (y+1)^2 + (z-1)^2 = 5^2$ $=> x^2 + y^2 + z^2 - 2x + 2y - 2z - 22 = 0$ 4. If A (-1, 4, -3) is one end of a diameter AB of the sphere $x^2 + y^2 + z^2 - 3x - 2y + 2z - 15 = 0$, the find the coordinates of B. Solution: Comparing with $x^2 + y^2 + z^2 + 2ux + 2vy + 2wz + d = 0$ $$u = -\frac{3}{2}$$, $v = -1$, $w = 1$ Centre of the sphere is $\left(\frac{-3}{2}, 1 - 1\right)$ One end of the diameter is (-1, 4, -3) Let B (x_2, y_2, z_2) be the other end of the diameter. The mid point of AB is th centre $\left(\frac{-3}{2}, 1 - 1\right)$ i.e., $$\left(\frac{-1+x_2}{2}, \frac{4+y_2}{2}, \frac{-3+z_2}{2}\right) = \left(\frac{-3}{2}, 1-1\right)$$ $$\Rightarrow$$ $x_2 = 4$, $y_2 = -2$, $z_2 = 1$ - \therefore The co-ordinates of B are (4, -2, 1) - 5. Find the centre and radius of each of the following spheres. (i) $$|\overrightarrow{r} - (2\overrightarrow{i} - \overrightarrow{j} + 4\overrightarrow{k})| = 5$$ (ii) $$\begin{vmatrix} \overrightarrow{2} + (3 \overrightarrow{i} - \overrightarrow{j} + 4 \overrightarrow{k}) \end{vmatrix} = 4$$ (iii) $$x^2 + y^2 + z^2 + 4x - 8y + 2z = 5$$ (iv) $$r^2 - r \cdot (4i + 2j - 6k) - 11 = 0$$ Solution: - (i) Vector equation of sphere is $|\overrightarrow{r} (\overrightarrow{2}i \overrightarrow{j} + 4\overrightarrow{k})| = 5$ - .: Centre is (2, -1, 4) and radius is 5. (ii) Vector equation of sphere |2r + (3i - j + 4k)| = 4 $$\Rightarrow$$ $|2r - (3i + j - 4k)| = 4$ $$\Rightarrow |\overrightarrow{r} - \frac{1}{2} (-3i + j - 4k)| = 2$$ - => Centre is $\left(\frac{-3}{2}, \frac{1}{2} 2\right)$ and radius is 2 - (iii) Cartesian equation of sphere $x^2 + y^2 + z^2 + 4x 8y + 2z = 5$ $$u = 2, v = -4, w = 1, d = -5$$ centre $$(-u, -v, -w) = (-2, 4, -1)$$ radius = $$\sqrt{u^2+v^2+w^2}$$ - d = $\sqrt{4+16+1+5}$ = $\sqrt{26}$ (iv) Equation of sphere $r^2 - r$. (4i + 2j - 6k) - 11 = 0 Let $$\vec{r} = x i + y j + zk$$ $$(\overrightarrow{x} + \overrightarrow{y} + \overrightarrow{z} + \overrightarrow{k})^2 - (\overrightarrow{x} + \overrightarrow{y} + \overrightarrow{z} + \overrightarrow{k})$$. $(4\overrightarrow{i} + 2\overrightarrow{j} - 6\overrightarrow{k}) - 11 = 0$ $$=>x^2 + y^2 = z^2 - (4x + 2y - 6z) - 11 = 0$$ $$=>x^2 + y^2 = z^2 - 4x - 2y + 6z + 11 = 0$$ Here $$u = -2$$, $v = --1$, $w = 3$, $d = -11$ Centre is $$(-u, -v, -w) = (2, 1, -3)$$ Radius = $$\sqrt{u^2 + v^2 + w^2}$$ - d = 5 6. Show that diameter of a sphere subtends a right angle at a point on the surface. Solution: Let P be a point on the surface of the sphere and AB be a diameter. Consider the great circle on the sphere passing through the points P, A and B. Take the centre O as the point of reference. $$\overrightarrow{P}B = \overrightarrow{O}B - \overrightarrow{O}P$$ $$\overrightarrow{AP} = \overrightarrow{OP} - \overrightarrow{OA} = \overrightarrow{OP} + \overrightarrow{OB}$$ $$\overrightarrow{AP}. \overrightarrow{PB} = (\overrightarrow{OP} + \overrightarrow{OB}). (\overrightarrow{OB} - \overrightarrow{OP}) = |\overrightarrow{OP}|^2 - |\overrightarrow{OB}|^2$$ $$= 0 \text{ SINCE } |\overrightarrow{OP}| = |\overrightarrow{OB}|$$... AB subtends a right angle at P o the surface. Hence the result.